پاسخ مورفوفیزیولوژیکی ریحان به تغذیه با دی‏اکسیدکربن و اتانول

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم باغبانی و مهندسی فضای سبز دانشگاه فردوسی مشهد، مشهد، ایران.

2 دانشیار گروه علوم باغبانی و مهندسی فضای سبز، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

به ­منظور تولید پایدار محصولات کشاورزی نیازمند استفاده از نهاده­ هایی هستیم که بیشترین راندمان و در عین حال کمترین ضرر را برای سلامتی­ انسان و محیط زیست داشته باشند. باهدف بررسی اثر سطوح مختلف دی‏اکسیدکربن و محلو‏ل‏پاشی اتانول بر ویژگی­های مورفوفیزیولوژیکی ریحان رقم کشکنی لولو در سال 1398 آزمایشی گلدانی به­صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه سطح دی‏اکسیدکربن (380، 700 و 1050 میلی­گرم در لیتر) و چهار سطح محلول­پاشی اتانول (0، 10، 20 و 30 درصد حجمی) در سه تکرار انجام شد. صفات مورد مطالعه شامل ویژگی­های رشدی (ارتفاع بوته، تعداد شاخه­فرعی، طول میانگره، قطر ساقه و وزن تر و خشک اندام هوایی)، رنگیزه‏های فتوسنتزی (کلروفیل a، کلروفیل b، کارتنوئید و کلروفیل کل)، فعالیت آنتی‏اکسیدانی، فنل کل و میزان اسانس بودند. نتایج مقایسه میانگین داده­ها نشان داد که با افزایش غلظت اتانول اکثر ویژگی­های  رشدی گیاه افزایش یافت همچنین کاربرد دی‏اکسیدکربن در سطح 700 میلی­گرم در لیتر بیشترین تاثیر را در افزایش ویژگی­های  رشدی ریحان برجای گذاشت. کاربرد 700 میلی­گرم در لیتر دی‏اکسیدکربن و محلول‏پاشی 20 درصد حجمی اتانول به‏ترتیب موجب افزایش 18/72، 01/74 و 33/71 درصدی کلروفیل a، کلروفیل b و کلروفیل کل نسبت به سطح 380 میلی­گرم در لیتر دی‏اکسیدکربن و عدم محلول‏پاشی اتانول شد. همچنین نتایج نشان داد که بیشترین فعالیت آنتی‏اکسیدانی (38/87 درصد) و فنل کل (264 میلی‏گرم در گرم وزن تر برگ) در سطح 700 میلی­گرم در لیتر دی‏اکسیدکربن و محلول‏پاشی 20 درصد اتانول مشاهده شد. بیشترین میزان اسانس نیز در سطح 1050 میلی­گرم در لیتر دی‏اکسیدکربن و محلول­پاشی 30 درصد حجمی اتانول حاصل شد. نتایج این آزمایش نشان داد که کاربرد دی‏اکسیدکربن و اتانول با تاثیر بر متابولیت گیاهی و بهبود رنگیزه­های فتوسنتز می‏تواند بر ویژگی­های مورفوفیزیولوژیکی گیاه ریحان تاثیرگذار باشد؛ بطوری­که برای رسیدن به بیشترین عملکرد کاربرد 700 میلی­گرم در لیتر دی‏اکسید کربن و 20  درصد حجمی اتانول پیشنهاد می‏شود.

کلیدواژه‌ها


Abanda, D., Nkpwat, D., Musch, M., Tschiersch, J., Boettne, M., and W. Schawb. 2006. Molecular interaction between methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. Journal of Experimental Botany. 57(15): 4025-4032.
Azimi, F., and F. Nejatzadeh. 2020. Effect of methanol spraying on seed yield and mucilage of flixweed (Descurainia sophia L.). Plant Productions. 43(1): 81-92. (In Persian).
Babaei, K., Moghaddam, M., and N. Farhadi. 2021. Morphological, physiological and phytochemical responses of Mexican marigold (Tagetes minuta L.) to drought stress. Scientia Horticulturae 284: 110116.
Bagheri, H., Ladan Moghadam, A.R., and H. Afshari. 2014. The effects of foliar application of methanol on growth and secondary metabolites in lavender. International Research Journal of Applied and Basic Science. 8(2): 150-152.
Becker, C., and H.P. Kläring. 2016. CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chemistry. 199: 736-745.
Broberg, M.C., Högy, P., Feng, Z., and H. Pleijel. 2019. Effects of elevated co2 on wheat yield: non-linear response and relation to site productivity. Agronomy. 9(243): 2-18.
Chen, W., Zhu, D., Ciais, Ph., Huang, C., Viovy, N., and M. Kageyama. 2019. Response of vegetation cover to CO2 and climate changes between last glacial maximum and pre-industrial period in a dynamic global vegetation model. Quaternary Science Review. 218(15): 293-305.
Cruz, J.L., Alfredo A.C., Daniel R., LeCain, D. Ellis, J., and A. Morgan. 2016. Elevated CO2concentrations alleviate the inhibitory effect of drought on physiology and growth of cassava plants. Scientia Horticulturae. 210(10): 122-129.
Dong, J.L., Xu, Q., Gruda, N., Chu, W.Y., Li, X., and Z.Q. Duan. 2018. Elevated and super-elevated CO2 differ in their interactive effect with nitrogen availability on fruit yield and quality of cucumber. Journal of the Science of Food and Agriculture. 98: 4509-4516.
Dorokhov, Y.L., Sheshukova, E.V., and T.V. Komarova. 2018. Methanol in plant life. Frontiers in Plant Science 9: 1623
Durchan, M., Vácha, F., and A. Krieger-Liszkay. 2001. Effects of severe CO2 starvation on the photosynthetic electron transport chain in tobacco plants. Photosynthesis Research. 68(3): 203-210.
 
Haakana, K., Saerkkae, L., and S. Somersalo. 2001. Gaseous ethanol penetration of plant tissues positively effects the growth and commercial quality of miniature roses and dill. Scientia Horticulturae. 88: 125-31.
Heins, R. 1980. Inhibition of ethylene synthesis and senescence in carnation by ethanol. Journal of the American Society for Horticultural Science. 105(1): 141-144.
Hossinzadeh, S.R. Salimi, A. Ganjeali, A., and R. Ahmadpour. 2016. Effects of foliar application of methanol on photosynthetic characteristics, chlorophyll fluorescence and chlorophyll content of chickpea (Cicer arietinum L.) under drought stress. Iranian Journal of Plant Biology. 5(18): 115-132.
Jin, C., Du, S., Wang, Y., Condon, J., Lin, X., and Y. Zhang. 2010. Carbon dioxide enrichment by composting in greenhouses and its effect on vegetable production. Journal of Plant Nutrition and Soil Science. 172: 418-424.
Keeling, C.D., and T.P. Whorf. 2005. Atmospheric CO2 records from sites in the SIO air sampling network, in trends: a compendium of data on global change, carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.
Khosravi, E. 2011. Effect of methanol and ethanol on yield and quality of Melissa officinalis L. Master`s thesis. Department of Horticulture Faculty of Agriculture, Islamic Azad University of Karaj, Iran.
Labra, M. 2004. Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Science. 167: 725-7321.
Larzqadiri, M., Mehrafarin, A., Naqdibadi, H.A., and F. Khaliqisigaroodi. 2013. The effect of different concentrations of methanol and ethanol on some characteristics of Plantago psyllium. Proceedings of the First National Conference of Medicinal Plants and Sustainable Agriculture. Hamedan, Iran 5 pp.
Li, W., Lu, C., Ding, Y., and Y.W. Zhang. 2017. The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China. Applied Energy. 204: 509-24.
Li, X., Dong, J., Nazim S., Gruda, Chu, W., and Z. Duan. 2020. Interactive effects of the CO2 enrichment and nitrogen supply on the biomass accumulation, gas exchange properties, and mineral elements concentrations in cucumber plants at different growth stages. Agronomy. 10(139): 2-21.
Makhdum, M.I., Malik, M.N.A., Din, S.U., Ahmad, F., and F.I. Chaudhry. 2002. Physiological response of cotton to methanol foliar application. Journal of Research in Science 13: 37-43. (In Persian).
Mehdizadeh, L., Farsaraei, S., and M. Moghaddam. 2021. Biochar application modified growth and physiological parameters of Ocimum ciliatum L. and reduced human risk assessment under cadmium stress. Journal of Hazardous Materials 409: 124954.
Mirseyed Hosseini, H., Kouhestani, M., Fathi Gerdelidani A., and M.R. Bihamta. 2018. Effect of increasing atmospheric CO2 concentration and nitrogen on growth and uptake of nutrients in wheat. Journal of Soil Management and Sustainable. 7(4): 19-43.
Mishra, A.K., and M. Verma. 2013. A mathematical model to study the dynamics of carbon dioxide gas in the atmosphere. Applied Mathematics and Computation. 219: 8595-8609.
Moghaddam, M., Narimani R., Rostami Gh., and S. Mojarab. 2018. Studying the effect of foliar application of methanol and ethanol on morphological and biochemical characteristics of sweet basil (Ocimum basilicum c.v. Keshkeni luvelou). Iranian Journal of Field Crops Research. 16(2): 345-354.
Morison, J.I.L., and D.W. Lawlor. 1999. Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell and Environment. 22: 659-682.
Nazari Moghaddam, R. 2014. Effects of methanol and ethanol on essential oil and growth of dill (Anethum graveolens L.). Master Thesis, Islamic Azad University, Miyaneh Branch: Miyaneh, Iran.
Nguyen, H.M., Sako, K., Matsui, A., Suzuki, Y., Golam Mostafa, M., Ha, C.V., Tanaka, M., Tran, L.S.P., Habu, Y., and M. Seki. 2017. Ethanol enhances high-salinity stress tolerance by detoxifying reactive oxygen species in Arabidopsis thaliana and rice. Frontiers in Plant Science. 8: 1001
Nourafcan, H., Kalantari, Z., and F. Sefidkon. 2018. The effect of methanol and ethanol foliar application on essential oil composition of peppermint. Agroecology Journal. 14(2): 9-18. (In Persian).
Omidbagi, R. 2007. Production and processing of medicinal plants (Volume 1). Behnashr publications. Tehran. (In Persian).
Pospisilova, J., Synková, H., Haisel, D., and S. Semorádová. 2007. Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, co2concentration and abscisic acid (a review). Acta Horticulturae, 748: 29-38.
Ramirez, I., Dorta, F., Espinozo, V., Jimenez, E., Mercad, A., and H. Penacortes. 2006. Effects of foliar and root applications of methanol on the growth of arabidopsis, tobacco and tomato plants. Journal of Plant Growth Regulation. 25(1): 30-44.
Sajedi Moghadam, S., Mehrafarin, A., Naghdi Badi, H., Pazoki, AR., and N. Qavami. 2012. Evaluation of phytochemical yield of thyme (Thymus vulgaris L.) under foliar application of hydroalcohols. Journal of Medicinal Plants. 4(44): 130-140. . (In Persian).
Samadimatin, A., and A. Hani. 2017.  Effect of ethanol and humic acid foliar spraying on morphological traits, photosynthetic pigments and quality and quantity of essential oil content of. Iranian Journal of Plant Physiology. 8(1): 2299- 2306. (In Persian).
Sarabandi, A. 2017. Phytochemical investigation of Ducrosia anethifolia under foliar application of hydroalcohols. master`s thesis. Department of the University of Sistan & Baluchestan. (In Persian).
Shoor, M., and F. Mondani. 2012. Effect of elevated CO2 in different fertilizer conditions on physiological traits in lemon balm (Melissa officinalis) at greenhouse. Iranian Journal of Field Crops Research. 10(1): 133-142.
Singh, A., and A. Madhoolika. 2015. Effects of ambient and elevated COon growth, chlorophyll fluorescence, photosynthetic pigments, antioxidants, and secondary metabolites of Catharanthus roseus (L.) G Don. grown under three different soil N levels. Environmental Science and Pollution Research. 22: 3936-3946.
Soltani, Z.,  Dianati Daylami, D.,  Aliniaeifard, S., and S. Rostami. 2020. Effects of different concentrations of CO2 in the atmosphere of in vitro culture vessels on growth characteristics and photosynthetic capacity of Epipactis veratrifolia. Iranian Journal of Horticultural Science. 51(1): 45-54. (In Persian).
Svoboda, K.P., and J.B. Hampson. 1999. Bioactivity of essential selected oils of temperate aromatic plants: antibacterial, antioxidant, antiinflammatory and other related pharmacological activities. IENICA Conference, Specialty Chemicals for the 21st Century. Intermediary Products, Cosmetics, Perfumes, and Medicinal Applications. pp: 1-17.
Tisserat, B., and S.F. Vaughn. 2001. Essential oils enhanced by ultra-high carbon dioxide levels from Lamiaceae species grown in vitro and in vivo. Plant Cell Reports 20:361-368.
Urbonavičiūtė, A., Samuolienė, G., Sakalauskaitė, J., Duchovskis, P., Brazaitytė, A., Šikšnianienė, J.B., Ulinskaitė R., Šabajevienė, G., and K. Baranauskis. 2006. The Effect of elevated CO2 concentrations on leaf carbohydrate, chlorophyll contents and photosynthesis in radish. Polish Journal of Environmental Studies. 15(6): 921-925.
Vojodi Mehrabani, L. 2019. The effects of methanol and ethanol foliar application under salinity stress on some physiological characteristics of Pelargonium graveolens L. Journal of Plant Physiology and Breeding. 9(1): 63-73.
Wang, M., Xie, B., Fu, Y., Dong, Ch., Hui, L., Liu, G., and Liu, H. 2015. Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem. Photosynthesis Research. 126: 351-362.
Wellburn, A.R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology. 144(3): 307- 313.
Xu, Z., Jiang, Y., and G. Zhou. 2015. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Frontiers in Plant Science. 6: 701-715.
Zheng, Y., Li, F., Hao, L., Shedayi, A.A., Guo, L., Ma, C., Huang, B., and M. Xu. 2019. The optimal CO2 concentrations for the growth of three perennial grass species. BMC Plant Biology. 18(27): 2-12.
Zbiec, I., Karczmarczyk, S., and C. Podsiadlo. 2003. ̍Response of some cultivated plants to methanol as compared to supplemental irrigation. Electronic Journal of Polish Agricultural Universities, 6(1): 1-7.