بررسی خصوصیات رشدی و تغییرات غلظت عناصر پرمصرف و کم‌مصرف گیاه سیر تحت تأثیر منابع نیتروژن و تنش قلیائیت در کشت هیدروپونیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ولی عصر عج رفسنجان، رفسنجان، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ولی عصر رفسنجان، رفسنجان، ایران

3 گروه علوم باغبانی، دانشکده کشاورزی پردیس ابوریحان، دانشگاه تهران، تهران

چکیده

قلیایی بودن آب و خاک از مهم‌ترین فاکتورهای محیطی محدود‌کننده‌ی تولید محصولات کشاورزی در مناطق خشک و نیمه‌خشک دنیا ازجمله ایران است. از این رو به‌منظور ارزیابی تأثیر منابع نیتروژن بر غلظت عناصر غذایی اندام هوایی سیر در شرایط تنش قلیاییت، آزمایشی به‌صورت فاکتوریل و در قالب طرح کاملاً تصادفی با سه فاکتور بی‌کربنات سدیم در سه سطح (0، 10 و 20 میلی‌مولار)، نوع منبع نیتروژن در سه سطح (سولفات آمونیوم، نیترات آمونیوم و نیترات کلسیم با غلظت 5 میلی‌مولار) و دو ژنوتیپ سیر (سفید و بنفش) با 3 تکرار انجام شد. نتایج نشان داد که کاربرد منابع نیترات آمونیوم و سولفات آمونیوم اثر منفی بی‌کربنات را بر وزن تر و خشک اندام هوایی و وزن تر و خشک ریشه کاهش داد. نتایج همچنین نشان داد که با افزایش تنش قلیائیت غلظت نیتروژن و پتاسیم در هر دو ژنوتیپ سیر تغذیه‌شده با سولفات آمونیوم یا نیترات آمونیوم افزایش یافتند. غلظت کلسیم و منیزیم گیاهانی که با منابع سولفات آمونیوم و نیترات کلسیم تغذیه شده بودند با افزایش تنش قلیائیت در هر دو ژنوتیپ افزایش یافت. همچنین غلظت آهن اندام هوایی در هر دو ژنوتیپ سیر تحت تأثیر بی‌کربنات در هر سه منبع نیتروژن کاهش یافت. با توجه به نتایج به‌دست‌آمده از این آزمایش استفاده از منابع سولفات آمونیوم و نیترات آمونیوم کارایی بهتری بر جذب و غلظت عناصر غذایی در اندام هوایی سیر و رشد بهتر این گیاه در شرایط تنش بی‌کربنات داشت.

کلیدواژه‌ها


Abbey, L., Joyce, D. C., Aked, J., & Smith, B. (2002). Genotype, sulphur nutrition and soil type effects on growth and dry-matter production of spring onion. The Journal of Horticultural Science and Biotechnology77(3), 340-345.
Abdel Latef, A. A., & Tran, L. S. P. (2016). Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Frontiers in plant science7, 243.
Ahmad, P., & Sharma, S. (2012). Physio-biochemical attributes in two cultivars of mulberry (Morus alba L.) under NaHCO3 stress. International Journal of Plant Production4(2), 79-86.
Alhendawi, R. A., Römheld, V., Kirkby, E. A., & Marschner, H. (1997). Influence of increasing bicarbonate concentrations on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum, and maize. Journal of Plant Nutrition20(12), 1731-1753.
Anderson, T. S., Martini, M. R., de Villiers, D., & Timmons, M. B. (2017). Growth and tissue elemental composition response of Butterhead lettuce (Lactuca sativa, cv. Flandria) to hydroponic conditions at different pH and alkalinity. Horticulturae3(3), 41.
Azooz, M. M., Metwally, A., & Abou-Elhamd, M. F. (2015). Jasmonate-induced tolerance of Hassawi okra seedlings to salinity in brackish water. Acta physiologiae plantarum37(4), 77.
Bavaresco, L., Giachino, E., & Colla, R. (1999). Iron chlorosis paradox in grapevine. Journal of Plant Nutrition22(10), 1589-1597.
Bertoni, G. M., Pissaloux, A., Morard, P., & Sayag, D. R. (1992). Bicarbonate‐pH relationship with iron chlorosis in white lupine. Journal of Plant Nutrition15(10), 1509-1518.
Bie, Z., Ito, T., & Shinohara, Y. (2004). Effects of sodium sulfate and sodium bicarbonate on the growth, gas exchange and mineral composition of lettuce. Scientia Horticulturae99(3-4), 215-224.
Borgognone, D., Colla, G., Rouphael, Y., Cardarelli, M., Rea, E., & Schwarz, D. (2013). Effect of nitrogen form and nutrient solution pH on growth and mineral composition of self-grafted and grafted tomatoes. Scientia Horticulturae149, 61-69.
Coolong, T. W., & Randle, W. M. (2003). Ammonium nitrate fertility levels influence flavour development in hydroponically grown ‘Granex 33’onion. Journal of the Science of Food and Agriculture83(5), 477-482.
Coolong, T. W., Kopsell, D. A., Kopsell, D. E., & Randle, W. M. (2005). Nitrogen and sulfur influence nutrient usage and accumulation in onion. Journal of plant Nutrition27(9), 1667-1686.
Dogar, M. A., & Van Hai, T. (1980). Effect of P, N and HCO3-Levels in the Nutrient Solution on Rate of Zn Absorption by Rice Roots and Zn Content in Plants. Zeitschrift fuer Pflanzenphysiologie98(3), 203-212.
Forno, D. A., Yoshida, S., & Asher, C. J. (1975). Zinc deficiency in rice. II. Studies on two varieties differing in susceptibility to zinc deficiency. Plant and Soil42, 551-563.
Gaffney, J. M., Lindstrom, R. S., McDaniel, A. R., & Lewis, A. J. (1982). Effect of ammonium and nitrate nitrogen on growth of poinsettia [Plant nutrition, Euphorbia pulcherrima]. HortScience. 1-15.
Gao, D. W., Hu, Q., Yao, C., & Ren, N. Q. (2014). Treatment of domestic wastewater by an integrated anaerobic fluidized-bed membrane bioreactor under moderate to low temperature conditions. Bioresource Technology159, 193-198.
Getaneh, T. & Dechassa, N., (2018). Effect of manure and nitrogen rates on growth and yield of garlic (Allium sativum L.) at Haramaya, Eastern. Journal of Horticulture and Forestry, 10(9): 135-142.
Khan, H., Khan, T. N., Ramzan, A., Jillani, G. and Ali, M. (2016). Genotypic response of Garlic to various fertilizers levels under Agro-climatic conditions of Islamabad. Journal of Agricultural Research, 54(1): 1-10.
Kotsiras, A., Olympios, C. M., Drosopoulos, J., & Passam, H. C. (2002). Effects of nitrogen form and concentration on the distribution of ions within cucumber fruits. Scientia Horticulturae95(3), 175-183.
Li, C., Fang, B., Yang, C., Shi, D., & Wang, D. (2009). Effects of various salt–alkaline mixed stresses on the state of mineral elements in nutrient solutions and the growth of alkali resistant halophyte Chloris virgataJournal of Plant nutrition32(7), 1137-1147.
Lin, J., Wang, Y., Sun, S., Mu, C., & Yan, X. (2017). Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Science of the Total Environment576, 234-241.
Lu, Y. X., Li, C. J., & Zhang, F. S. (2005). Transpiration, potassium uptake and flow in tobacco as affected by nitrogen forms and nutrient levels. Annals of Botany95(6), 991-998.
Marschner, H. (1995). Mineral Nutrition of Higher Plants. Academic Press, London, Harcourt Brace and Company.
Mudziwa, N. (2010). Yield and quality responses of Egyptian white garlic (Allium sativum L.) and wild garlic (Tulbaghia violacea Harv.) to nitrogen nutrition (Doctoral dissertation, University of Pretoria).‏
Nasreen, S., Haque, M. M., Hossain, M. A., & Farid, A. T. M. (2007). Nutrient uptake and yield of onion as influenced by nitrogen and sulphur fertilization. Bangladesh Journal of Agricultural Research32(3), 413-420.
Nikolic, M., & Römheld, V. (2002). Does high bicarbonate supply to roots change availability of iron in the leaf apoplast?. Plant and Soil241(1), 67-74.
Pariari, A. & Khan, S. (2013). Growth, yield and quality of onion (Allium cepa L.) as influenced by different level and source of sulphur. Paper proceedings of Agriculture and Animal, 2.‏
Pearce, R. C., Li, Y., & Bush, L. P. (1999). Calcium and bicarbonate effects on the growth and nutrient uptake of burley tobacco seedlings: hydroponic culture. Journal of plant nutrition22(7), 1069-1078.
Quave, C.L. (2013). Medicinal plant monographs contributions from Emory University course. HLTH. 385: 661.
Radi, A. A., Abdel-Wahab, D. A., & Hamada, A. M. (2012). Evaluation of some bean lines tolerance to alkaline soil. Journal of Biology and Earth Sciences2(1), 18-27.
Raven, J. A., & Smith, F. A. (1976). Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytologist76(3), 415-431.
Roosta, H. R. (2011). Interaction between water alkalinity and nutrient solution pH on the vegetative growth, chlorophyll fluorescence and leaf magnesium, iron, manganese, and zinc concentrations in lettuce. Journal of plant nutrition34(5), 717-731.
Roosta, H. R., & Schjoerring, J. K. (2007). Effects of ammonium toxicity on nitrogen metabolism and elemental profile of cucumber plants. Journal of Plant Nutrition30(11), 1933-1951.
Roosta, H. R., Sajjadinia, A., Rahimi, A., & Schjoerring, J. K. (2009). Responses of cucumber plant to NH4+ and NO3− nutrition: the relative addition rate technique vs. cultivation at constant nitrogen concentration. Scientia Horticulturae121(4), 397-403.
Ryan, J., Estefan, G. & Rashid, A. (2001). Soil and plant analysis laboratory manual. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria.‏
Sachin, A. J., Bhalerao, P. P. & Patil, S. J. (2017). Effect of organic and inorganic sources of nitrogen on growth and yield of garlic (Allium sativum L.) var. GG-4. International Journal of Chemical Studies, 5: 559-562.
Saeedi Gaghaghani, H., Yazdani Boiko, N., Saeedi, Garghani., & Soda Zadeh, H. (2014). Effect of different nitrogen sources and levels on quantitative and qualitative characteristics of parsley (Petroselinum crispum Mill.) in jiroft region. Iranian Journal of Field Crop Research, 12 (2): 327-316. (In Persian)
Sebnie, W., Mengesha, M., Girmay, G. & Feyisa, T. (2018). Response of garlic (Allium sativum L.) to nitrogen and phosphorus under irrigation in lasta district of amhara region, Ethiopia. Cogent Food & Agriculture, 4(1): 1532862.
Sharma, M. P., Singh, A., & Gupta, J. P. (2002). Sulphur status and response of onion Allium cepa to applied sulphur in soils of jammu districts. The Indian Journal of Agricultural Sciences72(1).
Tabatabaei, S. J., Fatemi, L. S. & Fallahi, E. (2006). Effect of ammonium: nitrate ratio on yield, calcium concentration, and photosynthesis rate in strawberry. Journal of Plant Nutrition, 29(7): 1273-1285.‏
Taghavi, T. S., Babalar, M., Ebadi, A., Ebrahimzadeh, H., & Asgari, M. A. (2004). Effects of nitrate to ammonium ratio on yield and nitrogen metabolism of strawberry (Fragaria xananassa cv. selva). International Journal of Agriculture and and Biology6(6), 994-997.
Tyson, R. V., Simonne, E. H., Treadwell, D. D., Davis, M., & White, J. M. (2008). Effect of water ph on yield and nutritional status of greenhouse cucumber grown in recirculating hydroponics. Journal of plant nutrition, 31(11): 2018-2030.‏
Valdez-Aguilar, L. A., & Reed, D. W. (2008). Influence of potassium substitution by rubidium and sodium on growth, ion accumulation, and ion partitioning in bean under high alkalinity. Journal of Plant Nutrition31(5), 867-883.
Yang, C. W., Xu, H. H., Wang, L. L., Liu, J., Shi, D. C., & Wang, D. L. (2009). Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica47(1), 79-86.
Yang, C., Shi, D. & Wang, D. (2008). Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 56(2): 179.‏
Yang, X., Romheld, V. & Marschner, H. (1993). Effect of bicarbonate and root zone temperature on uptake of Zn, Fe, Mn and Cu by different rice cultivars (Oryza sativa L.) grown in calcareous soil. In Plant Nutrition from Genetic Engineering to Field Practice. Springer Netherlands, 657-660.‏
Zaman, M. S., Hashem, M. A., Jahiruddin, M. & Rahim, M. A. (2011). Effect of nitrogen for yield maximization of garlic in old brahmaputra flood plain soil. Bangladesh Journal of Agricultural Research, 36(2): 357-367.
Zhang, F. C., Kang, S. Z., Li, F. S., & Zhang, J. H. (2007). Growth and major nutrient concentrations in Brassica campestris supplied with different NH4+/NO3− ratios. Journal of Integrative Plant Biology49(4), 455-462.
Zhanwu, G. A. O., Jiayu, H. A. N., Chunsheng, M. U., Jixiang, L. I. N., Xiaoyu, L. I., Lidong, L. I. N., & Shengnan, S. U. N. (2014). Effects of saline and alkaline stresses on growth and physiological changes in oat (Avena sativa L.) seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca42(2), 357-362.
Zhao, K., & Wu, Y. (2017). Effects of Zn deficiency and bicarbonate on the growth and photosynthetic characteristics of four plant species. PlosOne12(1), e0169812.
Zou, C., Shen, J., Zhang, F., Guo, S., Rengel, Z. & Tang, C. (2001). Impact of nitrogen form on iron uptake and distribution in maize seedlings in solution culture. Plant and soil, 235(2): 143-149.‏