بهبود خصوصیات کمی و کیفی گیاه اسفناج با کاربرد سلنیوم و نانوذرات سبز سلنیوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک، اراک، ایران.

2 دانشیار گروه باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک، اراک، ایران.

چکیده

گیاه اسفناج (Spinacia Oleraceae L.) یکی از سبزی­های برگی است که در گروه گیاهان تجمع کننده نیترات قرار گرفته است. سلنیوم که به عنوان یک عنصر مفید شناخته شده است، در غلظت­های پایین می­تواند اثرات مفیدی بر متابولیسم گیاهان و همچنین کاهش تجمع نیترات داشته باشد. این پژوهش به­منظور بررسی تأثیر عنصر سلنیوم بر خصوصیات مورفولوژیکی، فیتوشیمیایی و میزان تجمع نیترات در گیاه اسفناج در قالب طرح بلوک­های کامل تصادفی در هفت تیمار و با هفت تکرار اجرا گردید. تیمارها شامل سلنیت سدیم (Na2SeO3) در غلظت­های 1، 2 و 4 میلی­گرم بر لیتر و نانوذرات سبز سلنیت سدیم (Se NPs) در غلظت­های 1، 2 و 4 میلی­گرم بر لیتر و شاهد (بدون کاربرد سلنیوم) بودند که به­صورت محلول­پاشی برگی­ مورد استفاده قرار گرفتند. نتایج نشان داد اکثر تیمارهای تغذیه­ای، به­ویژه غلظت چهار میلی­گرم بر لیتر سلنیت سدیم و یک میلی­گرم بر لیتر نانوذرات سلنیوم به­طور معنی داری باعث افزایش وزن تر و خشک بوته، کلروفیل a، کلروفیل b و کلروفیل کل و فعالیت آنزیم نیترات ردوکتاز و کاهش غلظت نیترات شدند. در اکثر تیمارهای تغذیه­ای، میزان عناصر فسفر، پتاسیم و سلنیوم بیشتر از شاهد بود. در مقابل، گیاهان تیمار شاهد به طور معنی داری مقدار روی بیشتری نسبت به گیاهان تیمار شده با مقادیر مختلف سلنیوم نشان دادند.

کلیدواژه‌ها


Alberici, A., Quattrini, E., Penati, M., Martinetti, L., Marino Gallina, P., and Ferrante, A., 2008. Effect of the reduction of nutrient solution concentration on leafy vegetables quality grown in floating system. ActaHorticulturae. 801:1167–1176.
Ani, M., 2008. Selenium Bioavailability and Its Biological Significance, 5th Iranian Nutrition Congress, Tehran, Iranian Nutrition Association.
Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts polyphenol oxidase in beta vulgaris. Plant Physiology. 24(1): 1–15.
Cataldo, D.A., Schrader, L.E. and Youngs, V.L., 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis. 6: 71–80.
Derosa, M., Monreal, C., Schnitzer, M., Walsh, R.P., and Sultan, Y., 2010. Nanotechnology in fertilizers. Nature Nanotech Nature Nanotechnology. 5(2), 91.
EFSA. 2008. Nitrate in vegetables: scientific opinion of the panel on contaminants in the food chain. European Food Safety Authority Journal. 689: 1–79.
El Mehdawi, A.F., Cappa, J.J., Fakra, S.C., Self, J., Pilon-Smits, E.A.H., 2012. Interactions of selenium hyperaccumulators and nonaccumulators during cocultivation on seleniferous or nonselenifer- ous soil – the importance of having good neighbors. New Phytol. 194: 264–277.
European Union. 2002. Commission Regulation (EC) No563/2002 of 2 April 2002 amending regulation (EC) No466/2001 setting maximum levels for certain contaminants infoodstuffs. Official Journal 77: 1-13.
Feng, R., Wei, C., and Tu, S., 2013. The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany. 87: 58–68.
Ferrarese, M., Mahmoodi, M., Quattrini, E., Schiavi, M., and Ferrante, A., 2012. Biofortification of Spinach Plants Applyng Selenium in the Nutrient Solution of Floating System. Vegetable Crops Research Bulletin. 76: 127–136.
Gholami, M., Sajedi, N.A., and Gomarian, M., 2012. The effect of application of superabsorbent polymer, zinc and selenium compounds on yield and yield components of durum wheat. Iranian New agricultural findings. 7: 69–81.
Golubkina, N.A., Folmanis, G.E., and Tananaev, I.G., 2012. Comparative evaluation of selenium accumulation by Allium species after foliar application of selenium nanoparticles, sodium selenite and sodium selenate. Doklady Biological Sciences. 444: 176–179.
Hajiboland, R., and Sadeghzade, N., 2014. Effect of selenium on CO2 and NO3 assimilation under low and adequate nitrogen supply in wheat (Triticum aestivum L.). Photosynthetica. 52: 501–510.
Harris, J., Schneberg, K.A., and Pilon-Smits, E.A.H., 2014. Sulfur-selenium-molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta. 239: 479–491.
Hartikainen, H., 2005. Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology. 18: 309–318.
Hasanuzzaman, M., Bhuyan, M.H.M.B., Raza, A., Hawrylak-Nowak, B., Matraszek-Gawron, R., Nahar, K., and Fujita. M., 2020. Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities. Plants 9, no. 12: 1711.
Jaworski, E.G., 1971. Nitrate Reductase Assay in Intact Plant Tissues. Biochemical and Biophysical Research Communications. 43: 1274–1279.
Khademi Astaneh, R., Tabatabai, S., and Bolandnazar, S., 2017. Effect of selenium on yield and vegetative characteristics of button cabbage grown in hydroponics. Journal of Horticultural Science . 31: 167–179.
Khosravi, S., 2020. Investigation of the effect of sodium selenite and green selenium nanoparticles on reducing nitrate accumulation in watercress (Lepidium sativum L.). MSc. Thesis on Horticulture. Arak University. 95 pages.
Mohammadi, M., 2020. Investigation of the effect of sodium selenite and green selenium nanoparticles on nitrate accumulation in lettuce (Lactuca sativa L.). MSc. Thesis on Horticulture. Arak University. 110 pages.
Moteshare Zadeh, B., Ghorbani, S., and Alikhani, H.A., 2020. Spinach (Spinacia oleraceae) Nutritional Responses to Selenium Application. Communications in Soil Science and Plant Analysis, 51: 2537-2550.
Munshi, C.B., and Mondy, N.I., 1992. Glycoalkaloid and nitrate content of potatoes as affected by method of selenium application. Biological Trace Elemental Research. 33: 121–127.
Orero-Iserte, L., Roig-Navarro, A.F., and Hernandez, F., 2004. Simultaneous determination of arsenic and selenium species in phosphoric acid extracts of sediment samples by HPLC-ICP-MS. Analytica Chimica Acta. 527: 97–104.
Padmaja, K., Prasad, D.D.K., and Prasad, A.R.K., 1989. Effects of selenium on chlorophyll biosynthesis in mung bean seedling. Phytochemistry. 28: 3321–3324.
Pilon-Smits E.A.H. 2015. Selenium in Plants. In Progress in Botany, eds. U. Lüttge, and W. Beyschlag, 93-107. Springer Press.
Pilon-Smits, E.A.H., Quinn, C.F., Tapken, W., Malagoli, M., and Schiavon, M., 2009. Physiological functions of beneficial elements. Current Opinion in Plant Biology. 12: 267–274.
Rios, J.J., Blasco, B., Rosales, M.A., Sanchez-Rodriguez, E., Leyva, R., Cervilla, L.M., Romero, L., and Ruiz, J.M., 2010. Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. Journal of the Science of Food and Agriculture. 90: 1914–1919.
Saffaryazdi, A., Lahouti, M., Ganjeali, A., and Bayat, H., 2012. Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleraceae L.) plants. Notulae Scientia Biologicae. 4: 95–100.
Schiavon, M., Lima, L.W., Jiang, Y., and Hawkesford, M.J., 2017. Effects of selenium on plant metabolism and implications for crops and consumers. In Selenium in plants, eds. E. A. Pilon-Smits, H. Winkel, L. H. E. and Z. Q. Lin, Springer International Publishing AG.
Terry, N., Zayed, A.M., De Souzam M.P., and Tarun, A.S., 2000. Selenium in higher plants. Annuals Review of Plant Physiology and Plant Molecular Biology. 51: 401–432.
Thorup Krisensen, K., 2001. Root growth and Soil nitrogen depletion by onion, lettuce, early cabbage and carrot. Acta Horticulture. 563: 201–206.
Wu, M., Cong, X., Li, M., Rao, S., Liu, Y., Guo, J., Zhu, S., Chen, S., Xu, F., Cheng, S., Liu, L., Yu, T., 2020. Effects of different exogenous selenium on Se accumulation, nutrition quality, elements uptake, and antioxidant response in the hyperaccumulation plant Cardamine violifolia. Ecotoxicology and Environmental Safety. 204: 111045.
Zhong-hua, B., Bo, L., Rui-feng, C., Yu, W., Tao, L., and Qi-chang, Y., 2020. Selenium distribution and nitrate metabolism in hydroponic lettuce (Lactuca sativa L.): Effects of selenium forms and light spectra. Journal of Integrative Agriculture. 19: 133–144.