اثرات نیتریک‌اکسید بر برخی ویژگی‌های فیزیکوشیمیایی تحمل به تنش شوری کلریدسدیم در دو پایه گلابی Pyrodwarf و OHF69

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

2 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

3 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

چکیده

نیتریک‌اکسید مولکول پیام‌رسان گازی در گیاهان است که در فرآیندهای فیزیولوژیکی مختلف از جمله در تنش‌های غیر زیستی نقش مهمی دارد. در این مطالعه، پایه‌های گلابی OHF69 و Pyrodwarf در محلول غذایی رشد داده شدند و آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرا شد تا اثرات سدیم نیتروپروساید به عنوان رها کننده نیتریک‌اکسید در چهار سطح (صفر ، 1/0، 5/0 و 1 میلی مولار) بر برخی ویژگی‌های فیزیولوژیکی و غلظت عناصر سدیم و پتاسیم تحت تنش شوری کلریدسدیم در چهار سطح (صفر، 50، 100 و 150 میلی مولار) و نیز مقایسه تحمل تنش دو پایه مورد ارزیابی قرار گیرد. اعمال تیمار نیتریک‌اکسید در هر دو پایه در معرض تنش کلریدسدیم، به طور معنی داری رشد ارتفاع پایه‌های گلابی، محتوای نسبی آب برگ، پرولین، پتاسیم و نسبت پتاسیم به سدیم در گیاهان را افزایش داد. همچنین، محتوای مالون دی آلدئید، H2O2 و غلظت سدیم در برگ ها کاهش یافت. پایه‌های OHF69 در مقایسه با پایه‌های Pyrodwarf محتوای نسبی آب برگ، پرولین و نسبت پتاسیم به سدیم بیشتری داشتند و همچنین محتوای مالون دی آلدئید، H2O2 و غلظت سدیم کمتری را نشان دادند. نتایج این آزمایش نشان داد که تیمار نیتریک‌اکسید آسیب‌های ناشی از تنش شوری کلریدسدیم را با بهبود پارامترهای رشدی و فیزیولوژیکی کاهش داد و با ایجاد تعادل در نسبت پتاسیم به سدیم، منجر به افزایش تحمل پایه‌های گلابی تحت تنش شوری گردید. همچنین پایه‌های OHF69 در تمامی سطوح تیمار شوری کلریدسدیم، ظرفیت تحمل نسبی بیشتری در مقایسه با پایه‌های Pyrodwarf از خود نشان دادند.

کلیدواژه‌ها


Abdollahi, H. 2011. Pear, botany, cultivars and rootstocks. Publication of Agricultural Education, Iranian Ministry of Agriculture, Tehran, Iran. 196. ( I nPersian).
Ahmad, P., Abdel Latef, A. A., Hashem, A., Abd_Allah, E. F., Gucel, S. and Tran, L. S. P. 2016. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science. 7: 347.
Amiri, J. and Eshghi, S. 2015. Ion and mineral concentrations in roots and leaves of two grapevine cultivars as affected by nitric oxide foliar application under NaCl stress. OENO One. 49(3): 155-164.
Aras, S., Keles, H. and Eşitken, A. 2020. SNP mitigates malignant salt effects on apple plants. Erwerbs-Obstbau. 62: 107–115.
Bates, L., Waldren, R. and Teare, I. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39: 205-207.
Campos, F. V., Oliveira, J. A., Pereira, M. G. and Farnese, F. S. 2019. Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. Planta. 250(5): 1475-1489.
Egbichi, I., Keyster, M. and Ludidi, N. 2014. Effect of exogenous application of nitric oxide on salt stress responses of soybean. South African Journal of Botany. 90: 131-136.
Fancy, N.N., Bahlmann, A.K. and Loake, G.J. 2017. Nitric oxide function in plant abiotic stress. Plant, Cell and Environment. 40(4): 462-472.
Fazelian, N., Nasibi, F. and Rezazadeh, R. 2012. Comparison the effects of nitric oxide and spermidin pretreatment on alleviation of salt stress in chamomile plant (Matricaria recutita L.). Journal of Stress Physiology and Biochemistry. 8(3).
Fu, M., Li, C. and Ma, F. 2013. Physiological responses and tolerance to NaCl stress in different biotypes of Malus prunifolia. Euphytica. 189(1): 101-109.
Gay, C., Collins, J. and Gebicki, J.M. 1999. Hydroperoxide assay with the ferric–xylenol orange complex. Analytical Biochemistry. 273: 149-155.
Hasanuzzaman, M. and Fujita, M. 2013. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology. 22(3): 584-596.
Hayat, S., Yadav, S., Nasser Alyemeni, M., Irfan, M., Wani, A. S. and Ahmad, A. 2013. Alleviation of salinity stress with sodium nitroprusside in tomato. International Journal of Vegetable Science. 19(2): 164-176.
Heath, R. L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics. 125(1): 189-198.
 
Kaya, C., Akram, N. A. and Ashraf, M. 2019. Influence of exogenously applied nitric oxide on strawberry (Fragaria× ananassa) plants grown under iron deficiency and/or saline stress. Physiologia plantarum. 165(2): 247-263.
Jamali, B., Eshghi, S. and Tafazoli, E. 2015. Mineral composition of ‘Selva’strawberry as affected by time of application of nitric oxide under saline conditions. Horticulture, Environment, and Biotechnology. 56(3): 273-279.
Jogaiah, S., Govind, S. R. and Tran, L. S. P. 2013. Systems biology-based approaches toward understanding drought tolerance in food crops. Critical reviews in biotechnology. 33(1): 23-39.
Khan, M. N., Mobin, M., Mohammad, F. and Corpas, F. J. Eds. 2015. Nitric oxide action in abiotic stress responses in plants, 51-52. Basel, Switzerland: Springer International Publishing.
Khoshbakht, D., Asghari, M. R. and Haghighi, M. 2018. Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica. 56(4): 1313-1325.
Kausar, F., Shahbaz, M. and Ashraf, M. 2013. Protective role of foliar-applied nitric oxide in Triticum aestivum under saline stress. Turkish Journal of Botany. 37(6): 1155-1165.
Liang, W., Ma, X., Wan, P. and Liu, L. 2018. Plant salt-tolerance mechanism: A review. Biochemical and biophysical research communications. 495(1): 286-291.
Lin, Y., Liu, Z., Shi, Q., Wang, X., Wei, M. and Yang, F. 2012. Exogenous nitric oxide (NO) increased antioxidant capacity of cucumber hypocotyl and radicle under salt stress. Scientia horticulturae. 142: 118-127.
Liu, S., Dong, Y. J., Xu, L. L., Kong, J. and Bai, X. Y. 2013. Roles of exogenous nitric oxide in regulating ionic equilibrium and moderating oxidative stress in cotton seedlings during salt stress. Journal of soil science and plant nutrition. 13(4): 929-941.
Lu, Y., Li, N., Sun, J., Hou, P., Jing, X., Zhu, H. and Chen, S. 2013. Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress. Tree physiology. 33(1): 81-95.
Manai, J., Kalai, T., Gouia, H., and Corpas, F. J. 2014. Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants. Journal of soil science and plant nutrition. 14(2): 433-446.
Mirabdulbaghi, M. 2017. The effect of salinity on physiological aspects of some grafted-pear rootstocks. Iranian Journal of Horticultural Science. 48(2): 347-356. ( InPersian)
Misra, A. N., Misra, M., and Singh, R. 2011. Nitric oxide ameliorates stress responses in plants. Plant, Soil and Environment 57(3): 95-100.
Poór, P., Laskay, G., and Tari, I. 2015. Role of nitric oxide in salt stress-induced programmed cell death and defense mechanisms. In Nitric Oxide Action in Abiotic Stress Responses in Plants, 193-219. Springer, Cham.
Repellin, A., Thi, A.P., Tashakorie, A., Sahsah, Y., Daniel, C. and Zuily-Fodil, Y. 1997. Leaf membrane lipids and drought tolerance in young coconut palms (Cocos nucifera L.). European Journal of Agronomy. 6(1-2): 25-33.
Shams, M., Ekinci, M., Ors, S., Turan, M., Agar, G., Kul, R., and Yildirim, E. 2019. Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiology and Molecular Biology of Plants. 25(5): 1149-1161.
Siddiqui, M. H., Al-Whaibi, M. H., and Basalah, M. O. 2011. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma. 248(3): 447-455.
Tamura, F. 2012. Recent advances in research on Japanese pear rootstocks. Journal of the Japanese Society for Horticultural Science. 81(1): 1-10.
Tanou, G., Filippou, P., Belghazi, M., Job, D., Diamantidis, G., Fotopoulos, V. and Molassiotis, A. 2012. Oxidative and nitrosative based signaling and associated post translational modifications orchestrate the acclimation of citrus plants to salinity stress. The Plant Journal. 72(4):585-599.
Waling, I., VanVark, W., Houba, V. J. G., and Vanderlee, J. J. 1989. Soil and plant analysis, a series of syllabi. 7: 712-717.
Wang, H., Lin, J., Li, X. G., and Chang, Y. 2015. Genome-wide identification of pear HD-Zip gene family and expression patterns under stress induced by drought, salinity, and pathogen. Acta Physiologiae Plantarum. 37(9): 1-19.
Wen, X. P., Ban, Y., Inoue, H., Matsuda, N., Kita, M., and Moriguchi, T. 2011. Antisense inhibition of a spermidine synthase gene highlights the role of polyamines for stress alleviation in pear shoots subjected to salinity and cadmium. Environmental and Experimental Botany. 72(2): 157-166.
Yang, L. T., Qi, Y. P., Chen, L. S., Sang, W., Lin, X. J., Wu, Y. L., and Yang, C. J. 2012. Nitric oxide protects sour pummelo (Citrus grandis) seedlings against aluminum-induced inhibition of growth and photosynthesis. Environmental and experimental botany. 82: 1-13.
Zafari, F., Amiri, M. E., Noroozisharaf, A., and Almasi, P. 2018. Physiological and Morphological Responses of the ‘Dargazi’Pear (Pyrus communis) to in vitro Salinity. Agriculturae Conspectus Scientificus. 83(2): 169-174.
Ziogas, V., and Molassiotis, A. 2015. Nitric oxide action in the improvement of plant tolerance to nutritional stress. In Nitric Oxide Action in Abiotic Stress Responses in Plants, 169-180. Springer, Cham.