اثرات تغذیه برگی اسید فولویک و نانو اکسید روی بر برخی ویژگی‌های رشدی و اسانس گیاه بادرنجبویه Melissa officinalis L.

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

2 گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران.

چکیده

به منظور بررسی اثرات محلول‌پاشی غلظت‌های مختلف اسید فولویک (صفر، ده و 25 میلی‌گرم در لیتر) و نانو اکسید روی (صفر،20 و40 میلی‌گرم در لیتر) بر ویژگی‌های فیزیولوژیکی و بیوشیمایی گیاه بادرنجبویه آزمایش گلدانی به صورت فاکتوریل در قالب طرح کاملا تصادفی با نه ترکیب تیماری و سه تکرار به اجرا در آمد. در ادامه برخی صفات ریخت شناختی (ارتفاع گیاه، قطر ساقه، وزن تر و خشک بخش هوایی و ریشه)، صفات فیزیولوژیکی (سطح برگ و رنگیزه‌های فتوسنتزی)، صفات بیوشیمایی (فنل کل و ظرفیت آنتی‌اکسیدان کل)، غلظت پتاسیم، فسفر و محتوای اسانس گیاه بادرنجبویه اندازه‌گیری شد. کاربرد همزمان اسید فولویک و نانوذرات اکسید روی باعث افزایش معنی‌دار میزان ظرفیت آنتی‌اکسیدانی و محتوای فنول کل گیاه بادرنجبویه گردید. بیشترین مقدار پتاسیم (5/24 میلی گرم بر گرم وزن خشک) در گیاهان تیمار شده با اسید فولویک 25 میلی‌گرم در لیتر با نانو اکسید روی 20 میلی‌گرم در لیتر مشاهده گردید. همچنین، تیمار 20 میلی‌گرم در لیتر نانو اکسید روی باعث افزایش غلظت فسفر (19/0 میلی-گرم بر گرم وزن خشک) در برگ‌های گیاه بادرنجبویه شد. بر اساس نتایج پژوهش حاضر، تیمار ترکیبی اسیدفولویک با غلظت ده میلی‌گرم در لیتر با نانو اکسید روی با غلظت20 میلی‌گرم در لیتر بیشترین درصد اسانس را با 29/0 درصد به خود اختصاص داد. چنین به نظر می‌رسد که کاربرد اسید فولویک و نانو اکسید روی می‌تواند با بهبود شرایط رشدی گیاه باعث افزایش عملکرد و تولید گیاه دارویی بادرنجبویه شود و از نظر اقتصادی به تولیدکنندگان این محصول کمک نماید.

کلیدواژه‌ها


Aberoumand, A., and Deokule, S. S. 2008. Comparsion of phenolic compounds of some edible plants of Iran and India. Pakistan Journal of Nutrition. 7(4): 582-585.
Adhikari, T., Kundu, S., Biswas, A. K., Tarafdar, J. C., and Subba Rao, A. 2015. Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. Journal of Plant Nutrition. 38(10): 1505-1515.
Alshaal, T., and El-Ramady, H. 2017. Foliar application: from plant nutrition to biofortification. Environment, Biodiversity and Soil Security.1(2): 71-83.
Aminifard, M. H., Aroiee, H., Nemati, H., Azizi, M., and Hawa, Z. E. 2012. Fulvic acid affects pepper antioxidant activity and fruit quality. African Journal of Biotechnology. 11(68): 13179-13185.
Arancon, N. Q., Edwards, C. A., Lee, S., and Byrne, R. 2006. Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology. 42, 65-69.
Ashraf, M. M., and Orooj, A. 2006. Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi L. Sprague). Journal of Arid Environments. 64: 209-220.
Auld, D. S. 2001. Zinc coordination sphere in biochemical zinc sites. In Zinc Biochemistry, Physiology, and Homeostasis (pp. 85-127). Springer, Dordrecht.
Bagdat, R. B., and Cosge, B. 2006. The essential oil of lemon balm (Melissa officinalis L.), its components and using fields. Anadolu Tarım Bilimleri Dergisi 21(1): 116-121.
Cottenie A. 1980. Soil and plant testing as a basis of fertilizer recommendations. FAO Bulletin, 82: 2-10.
Dehghan, G., and Khoshkam, Z. 2012. Tin (II)–quercetin complex: Synthesis, spectral characterisation and antioxidant activity. Food Chemistry. 131(2): 422-426.
De Sousa, A. C., Gattass, C. R., Alviano, D. S., Alviano, C. S., Blank, A. F., Alves, P. B. 2004. Melissa officinalis L. essential oil: antitumoral and antioxidant activities. Journal of pharmacy and pharmacology. 56(5): 677-681.
Esfandiari, E., Abdoli, M., Mousavi, S. B., Sadeghzadeh, B. 2016. Impact of foliar zinc application on agronomic traits and grain quality parameters of wheat grown in zinc deficient soil. Indian Journal of Plant Physiology. 21(3): 263-270.
Faizan, M., Hayat, S., and Pichtel, J. 2020. Effects of Zinc Oxide Nanoparticles on Crop Plants: A Perspective Analysis. In Sustainable Agriculture Reviews. 41 (pp. 83-99). Springer, Cham.
Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., and Kimura, S. 2020. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports. 10(1): 1-14.
Gohari, G., Hassanpouraghdam, M. B., Dadpour, M. R., and Shirdel, M. 2013. Influence of Zn Foliar Application on Growth Characteristics and Essential Oil Yield of Basil (Ocimum basilicum L.) Under Salinity Stress. Journal of Soil and Plant Interaction. 4(3): 15-24. [In Farsi]
Hassan, R. A., Abotaleb, S. T., Hamed, H. B., and Eldeen, M. S. 2019. Antioxidant and Antimicrobial Activities of Melissa officinalis L. (Lemon Balm) Extracts. Journal of Agricultural Chemistry and Biotechnology. 10(9): 183-187.
Hernandez, O. L., Garcia, A. C., Huelva, R., Martinez-Balmori, D., Guridi, F., Aguiar, N. O., Olivares, F. L., and Canellas, L. P. 2015. Humic substance from vermicompost urban lettuce production. Agronomy for Sustainable Development. 35: 225-232.
Joshi, K., Chavan, P., Dnyaneshwar, W., and Bhushan, P. 2004. Molecular markers in herbal drugs technology. Current Science. 87: 816-165.
Kaur, C., and Kapoor, H.C., 2002. Antioxidant and total phenolic contents of some Asian vegetables. International Journal Food Science and Technology. 37: 153-161.
Khan, A., Guramni, A.R., Khan, M.Z., Hussain, F., Akhtar, M. E., and Khan, S., 2012. Effect of humic acid on growth, yield, nutrient composition, photosynthetic pigment and total sugar contents of peas (Pisum sativum L.). Journal of Chemical Society of Pakistan. 6:56-63.
Khodakovskaya, M. V., and Biris, A. S. 2019. U.S. Patent No. 10,244,761. Washington, DC: U.S. Patent and Trademark Office.
Lee, C. H., Shin, H. S., Kang, K. H. 2004. Chemical and spectroscopic characterization of peat moss and its different humic fractions (Humin, Humic acid and fulvic acid). Journal of Soil and Groundwater Environment. 9(4): 42-51.
Luciano, P., Canellasa-Fabio, L., Olivaresa-Natália, O., Aguiara-Davey, L., Jonesb, A., Nebbiosoc, P., and Mazzeic, A. 2015. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae. 196, 15-27.
Ma, R., Levard, C., Judy, J. D., Unrine, J. M., Durenkamp, M., Martin, B., and Lowry, G. V. 2014. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environmental Science and Technology, 48(1): 104-112.
Misra, A., Srivastava, A. K., and Khan, A. 2005. Znacquisition and its role in growth, photosynthesis, photosynthetic pigments and biochemical changes in essential monoterpene oil (s) of Pelargonium graveolens. Photosynthetica. 43 (1): 153-165.
Monica, R. C., and Cremonini, R. 2009. Nanoparticles and higher plants. Caryologia. 62(2): 161-165.
Nardi, S., Pizzeghello, D., Muscolo, A., and Vianello, A. 2002. Physiology effects of humic substance on higher plants. Soil Biology and Biochemistry. 34: 1527-1536.
Olk, D. C., Dinnes, D. L., Scoresby, J. R., Callaway, C. R., and Darlington, J. W. 2018. Humic products in agriculture: potential benefits and research challenges—a review. Journal of Soils and Sediments. 18(8): 2881-2891.
Pettit, R. E. 2004. Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health. CTI Research. 1-17.
Popescu, G. C., and Popescu, M. (2018). Yield, berry quality and physiological response of grapevine to foliar humic acid application. Bragantia. 77(2): 273-282.
Ravi, S., H.T. Channal, N.S. Hebsur, B.N. Patil, and P.R. Dharmatti. 2008. Effect of sulphur, zinc and iron nutrition on growth, yield, nutrient uptake and quality of safflower (Carthamus tincturious). Application of humic substances results in consistent increases in crop yield and nutrient uptake. Journal of Plant Nutrition. 32: 1407-1426.
Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., and Waris, A. A. 2019. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 214, 269-277.
Said-Al Ahl, H., and Abeer, A. M. 2010. Effect of zinc and /or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stress. Ozean Applied Sciences. 3(1): 97-111.
Sanchez, S. A., Sanchez Andreu, J., Juarez, M., Jorda, J., and Bermudez, D. 2006. Imporvement of iron uptake in table grape by addition of humic substancecs. Journal of Plant Nutrition 29(2): 259-272.
Sarkar, F., Amiri., M. E., and Hassani, A. 2020. Impacts of preharvest sprays of fulvic acid on qualitative and antioxidant properties of sour cherry cv. Gysy. Horticultural Plant Nutrition. 2(2): 93-106. [In Farsi]
Schiavon, M., Pizzeghello, D., Muscolo, A., Vaccaro, S., Francioso, O. and Nardi, S. 2010. High molecular size humic substances enhance phenylpropanoid metabolismin maize (zea mays L.). Journal of Chemical Ecology. 36: 662-669.
Swat, M., Rybicka, I., and Gliszczyńska-Świgło, A. 2019. Characterization of fulvic acid beverages by mineral profile and antioxidant capacity. Foods 8(12): 605-611.
Tarraf, Sh., El-Sayed, A. A., and Ibrahim, M. E. 1994.  Effect of some micronutrients on Rosmarinus afficinalis. Journal Physiological Science. 18(1): 201-208
Vaughan, D., and Linehan, D. J. 2004. The growth of wheat plants in humic acid solutions under axenic conditions. Plant and Soil. 44: 445-449.
Zhang, X., and Schmidt, R. E. 2000. Hormone-containing products impact on antioxidant status of tall fescue and creeping bent grass subjected to drought. Crop Science. 40: 1344-1349.