Optimization of Arabidopsis germination system for nutritional studies under soilless culture

Document Type : Original Article

Authors

1 Associate Professor, Department of Horticultural Science, Mahabad Branch, Islamic Azad University, Mahabad, Iran.

2 Assistant Professor, Department of Horticulture and Product Physiology, Wageningen University, Wageningen, The Netherlands.

3 Professor, Department of Horticulture and Product Physiology, Wageningen University, Wageningen, The Netherlands

Abstract

Introduction:Arabidopsis thaliana is the most important model plant in plant nutrition studies, genetics, and plant biotechnology. Arabidopsis cultivation is mainly done in either soil or soilless systems. But hydroponic systems due to the exact control of plant nutritional needs and the substrate are more compatible for high accuracy experiments such as plant nutrition.Accordingly, this experiment was conducted to provide an optimized Arabidopsis germination system for production of healthy seedlings for soilless systems based on the agar-nutrient media.
Materials and Methods: Two milliliters microtubes were cut into 10 mm in length, and connected upsidedown to the table with adhesive tape then were filled with agar (0.55%) and mineral elements (Hoagland) medium (1:1V/V). Sterilized and stratified seeds were sown on filled microtubes and then transferred to the growth chamber. Germination percentage and growth parameters of seedlings were measured.
Results and discussion:Results showed the effectiveness of the optimized germination system and also the agar-nutrient medium. Accordingly, seed germination percentage was more than 97.5%. Also, production of healthy seedlings (85%) especially the production of intact roots for various biological root and nutritional studies was another advantage of this experiment. Based on the results three weeks old plants were ready for transplanting to the main cultivation system.
Conclusion:The results of the present study led to the conclusion that optimized system and medium due to high efficiency, simple and possible design, precise control of the substrate and root medium, could be recommended for Arabidopsis germination experiments and also arabidopsis cultivation for nutritional purposes.

Keywords


مهدیه، م.، و محمدصالح، ف.، 1394. نقش microRNA399 و سوکروز در پاسخ های فیزیولوژیک گیاه آرابیدوپسیس (Arabidopsis thaliana) نسبت به کمبود فسفر، زیست­شناسی گیاهی ایران، شماره 23، صص 75-86.‎
دیدار، ن.، پژوهنده، م.، و محمودی، ف.، 1393. ایجاد گیاهان زودگلده آرابیدوپسیس از طریق خاموش کردن ژن CLF به روش RNA silencing. مجله بیوتکنولوژی کشاورزی، شماره 6، صص 61-74.‎
وحدتی، م.، اقدسی، م.، و صادقی پور، ح.، 1389. بر هم کنش ترهالوز و اسید آسکوربیک در رشد گیاهچه­های آرابیدوپسیس. پژوهش­های تولید گیاهی، شماره 4، صص 48-27.‎
Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.
Arteca, R. N., and J. M. Arteca. 2000. A novel method for growing Arabidopsis thaliana plants hydroponically. Physiologia Plantarum 108: 188–193.
Boyes, D. C., A. M. Zayed, R., Ascenzi, A. J. McCaskill, N. E. Hoffman, K. R. Davis, and J. Görlach. 2001. Growth stage–based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. The Plant Cell 13(7): 1499-1510.
Conn S. J., B. M.Hocking Dayod, B. Xu, A. Athman, S. Henderson, L. Aukett, V.Conn, M. K. Shearer, S. Fuentes, S. D. Tyerman, and M. Gilliham. 2013. Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants. Plant methods 9: 4.
Hermans, C., M. Vuylsteke, F. Coppens, A. Craciun, D. Inzé, and N. Verbruggen. 2010. Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid‐responsive genes. New Phytologist 187(1: 119-131.
Hoagland, D. R., and D. I. Arnon. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347: 1–32.
Marschner, H. 2011. Marschner's mineral nutrition of higher plants. Academic press.
Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia plantarum 15: 473–497.
Norén H., P. Svensson, B. Andersson, H. Nore, P. Svensson, B. Andersson. 2004. A convenient and versatile hydroponic cultivation system for Arabidopsis thaliana. Physiologia Plantarum 121: 343–348.
Provart, N. J., J. Alonso, S. M. Assmann, D. Bergmann, S. M.Brady, J. Brkljacic, P. McCourt. 2016. 50 years of Arabidopsis research: highlights and future directions. New Phytologist 209(3): 921–944.
Schlesier, B., F. Bréton, and H. P. Mock. 2003. A hydroponic culture system for growing Arabidopsis thaliana plantlets under sterile conditions. Plant molecular biology reporter, 21(4): 449-456.
Smeets, K., J. Ruytinx, F. Van Belleghem, B. Semane, D. Lin, J. Vangronsveld, and A. Cuypers. 2008. Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana. Plant physiology and biochemistry 46(2): 212-218.
Somerville, C., and M. Koornneef. 2002. A fortunate choice: the history of Arabidopsis as a model plant. Nature Reviews Genetics 3(11): 883–889.
Tocquin P., L. Corbesier, A. Havelange, A. Pieltain, E. Kurtem, G. Bernier, and C. Périlleux. 2003. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC plant biology 3: 2.
Toda, T., H. Koyama, and Hara, T. 1999. A simple hydroponic culture method for the development of a highly viable root system in Arabidopsis thaliana. Bioscience, biotechnology, and biochemistry 63(1): 210-212.
Zhu, J.K., J. Liu, and L. Xiong. 1998. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. The Plant Cell 10(7): 1181-1191.