Effect of irrigation interval, bio and non‌-biofertilizers on yield components and some of biochemical compounds in Thyme (Thymus vulgaris L.)

Document Type : Original Article

Authors

1 Agronomy Department,Agriculture faculty,Shahrood Industrial University,Shahrood,Iran

2 Agronomy Department,Agriculture Faculty,Shahrood Industrial University,Shahrood,Iran

3 Biology Department,Yazd University,Yazd,Iran

Abstract

Introduction
Aromatic Thyme (Thymus vulgaris L; Lamiaceae) is a valuable and common medicinal plant in traditional medicine. Due to its main composition, thymol, is used in the food, pharmaceutical, health and cosmetic industries. Among the different species of Thyme, Thymus vulgaris is cultivated and produced in many parts of the world, including Iran(Omidbaigi, 2000). Water stress can decrease leaf height, number and leaf area, dry weight,stomata closure, chlorophyll content reduction and root growth in medicinal plants. Therefore, it is important to deal with the damaging effects of drought in different ways such as the use of biofertilizers.
Materials and methods
To investigate the effects of irrigation interval at three levels including W1=7(Control), W2=12 and W3=17 days irrigation interval as a main plot and bio and non – bio fertilizers at five levels including B1= control (without fertilizer), B2= Endo mycorrhizal (Glomus), B3= Azospirillum bacteria , B4= Pseudomonas bacteria and B5= chemical fertilizer(NPK) were considered as a sub­ plot on flowering branches yield , percentage of essential oil and some biochemical compounds in Thymus vulgaris, An experiment was conducted in a split plot design with randomized complete block design with three replications in 2017 in Asgarya agricultural field in Yazd. Finally, the data were analyzed through SAS statistical software and Excel software was used to draw charts. Means comparison was performed through LSD test at 5% probability level.                                                                                                             
Results and discussion
 The results showed that the highest of flowering branches yield and total phenol were observed in control of irrigation (W1) and NPK treatment (B5), the highest of biological yield and number of lateral branches were observed in control of irrigation (W1) and mycorrhiza treatment (B2)­ , the highest of protein was observed in control of irrigation (W1) and Azospirillum treatment (B3), the highest of soluble carbohydrates was observed in W2 and pseudomonas treatment (B4), ­the highest of height was observed in control of irrigation (W1) , ­The highest of proline and the percentage of essential oil were observed in W3.In terms of fertilizer treatment, ­the highest of height, proline and the percentage of essential oi were observed in pseudomonas treatment (B4), NPK (B5) and mycorrhiza (B2). In general, the results in this experiment can be expressed, in terms of water deficit stress, use of­­ biological fertilizers, especially mycorrhizal, can partly reduce the adverse effects on this plant.
Conclusions
In general, it can be concluded that the use of bio fertilizers, especially mycorrhiza, can reduce the side effects of this plant in water deficit conditions. According to the results of this study, it is concluded that accumulation of proline and carbohydrates in Thyme aerial parts in the face of water deficit stress, is one of the mechanisms of drought resistance in this plant. Rapid accumulation of osmotic pressure-regulating substances such as proline and carbohydrate decrease the osmotic potential of plant cells and thus water absorption of the plant. Also, similarity of yield increase and yield components of flowering shoots in Thyme with biofertilizers especially Mycorrhiza under stress conditions has positive effects of this fertilizer by improving physiological traits in the plant. Therefore, it seems that if the water deficit stress does not lead to a significant decrease in the economic performance of this plant, biofertilizers can be reduced on this plant.

Keywords


آرزمجو، ا.، حیدری، م.، و قنبری، ا.، 1388. بررسی تنش خشکی و سه نوع کود بر عملکرد گل، پارامتر­های فیزیولوژیک و جذب عناصر غدایی در گیاه دارویی بابونه (Matricaria chamomilla L.)، تحقیقات گیاهان دارویی و معطر ایران، شماره 4، صص 482-494
انتشاری، ش.، حاجی باقری ،س.، و رضوی زاده، ر .، 1390. نقش قارچ قارچ- ریشه و سالیسیلیک اسید در القای مقاومت Ocimum basilicum به شوری ،آفریقایی بیوتکنولوژی، شماره 11، صص 2223-2235
انجیلی، م.، اسماعیل پور، ب.، فاطمی، ح.، و جلیل وند، پ.، 1397. تأثیر قارچ میکوریزا بر رشد و عملکرد فلفل دلمه­ای  (Capsicum annum  L.) تحت شرایط تنش خشکی ، تنش­های محیطی در علوم زراعی، شماره 1، صص 123-139
 امیدبیگی، ر.، و محمودی سورستانی ، م.، 1389. اثر تنش خشکی بر برخی صفات مرفولوژی، میزان و عملکرد اسانس گیاه گل مکزیکی ( Agastache foeniculum Pursh Kuntzeعلوم باغبانی ایران، شماره 2، صص 153-161
بابایی، ک.، امینی دهقی، م.، مدرس ثانوی، س ع م.، وجباری، ر.، 1389. اثر تنش خشکی بر صفات مورفولوژیک، میزان پرولین و درصد تیمول در آویشن (Thymus vulgaris L.)، تحقیقات گیاهان دارویی و معطر ایران، شماره 2، صص 239-251
باغبانی آرانی، ا.، مدرس ثانوی ،س ع م.، مشهدی اکبر بوجار، م .، و مختصی بید گلی، ع .، 1396. واکنش برخی شاخص های رشد و عملکرد شنبلیله (Trigonella foenum- graecum L.) به زئولیت و کود نیتروژن در شرایط تنش کم­آبی، اکوفیزیولوژی گیاهان زراعی، شماره 4، صص 697-720
بزازی، ن.، خدامباشی، م.، و محمدی، ش.، 1392. تاثیر تنش خشکی بر خصوصیات مورفولوژیک و اجزای عملکرد گیاه دارویی شنبلیله، تولید و فرآوری محصولات زراعی و باغی، شماره 8، صص 11-23
خاتمی، م.، رمرودی، م.، و گلوی، م.، 1397. تأثیر تنش خشکی و کودهای زیستی و شیمیایی فسفره بر ویژگیهای مورفولوژیک، عملکرد گل و اسانس گیاه دارویی بابونه (Matricaria chamomilla L.)، علوم گیاهان زراعی ایران، شماره 4، صص 175-184
رحیمی، ع.، جهانبین، ش.، صالحی، ا.، و فرجی، ه.، 1395. اثر قارچ-ریشه بر خصوصیات مورفولوژیک، مقدار ترکیبات فنلی و فلورسانس کلروفیل گیاه دارویی گاوزبانL.) officinails ­ (Boragoتحت خشکی ، فیزیولوژی محیطی گیاهی، شماره 42، صص 46-55
رضایی چیانه، ا.، و دباغ محمدی نسب ،ع.، 1393. ارزیابی کاربرد تلفیقی کودهای زیستی و شیمیایی بر عملکرد کمی و کیفی زنیان (Carum copticum L.) در­کشت مخلوط نواری با شنبلیله (Trigonella foenum-graecum L.)، بوم­شناسی کشاورزی، شماره 3، صص 582-594
روستا، ر.، 1371. فرآوانی و فعالیت آزوسپریلیوم در برخی خاک­های ایران، چاپ دوم، انتشارات دانشگاه تهران.
فلاحی، ج.، کوچکی، ع ر. و رضوانی مقدم، پ.، 1388. بررسی تأثیر کودهای بیولوژیک بر عملکرد کمی و کیفی گیاه دارویی بابونه آلمانی (chamomillaMatricariaپژوهش­های زراعی ایران،1،صص 125-137
 وشوایی، ر.، ­گلوی ،م.، رمرودی، م.، و فاخری، ب.، 1394. اثرات تنش خشکی و تلقیح کود­های زیستی بر رشد، عملکرد و ترکیبات اسانس آویشن (Thymus vulgaris L.)، بوم­شناسی کشاورزی، شماره 2، صص 237-253
Abdul- Jaleel, C., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R., and Panneerselvam, R. 2007(a). Pseudomonas fluorescens enhances biomas yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids and Surfaces B: Biointerfaces 60: 7-11.
 
Amzad Hossain, M., and Shah, M.D. 2015. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia Borneensis. Arabian Journal of Chemistry 8:66-71.
André, C.M., Schafleitner, R., Legay, S., Lefèvre, I., Aliaga, C.A.A., Nomberto, G., Hoffmann, L., Hausman, J.F., Larondelle, Y., and Evers, D. 2009. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry 70(9), 1107-1116.
Aoac. 1995. Official method of analysis (16th ed). Arlington,UA,USA:AOAC.
Bates I, S., Waldren R. P., and Teare I, D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207.
Behra, R.K., Mishra, P.C., and Choudhury, N.K. 2002. High irradiance and water stress induce alterations in pigment composition and chloroplast activities of primary wheat leaves. Journal of Plant Physiology 159: 967-973.
Bianciotto,­ V., Andreotti, S., Balestrini, R., Bonfante, P., and Perotto, S. 2001. Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. European journal of Histochemistry 39-50.
Bolan, N. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil 134:189-207.
Cabuslay, G. S., Ito, O., and Alejar, A. A. 2002. Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Science 163: 815-827.
Crowe, J. H., Hoekstra, F. A., and Crowe, L. M. 1992. Anhydrobiosis. Annual Review of Plant Biology 54: 579-599.
De Carvalho, I.M. 2005. Effects of water stress on the proximate composition and mineral contents of seeds of two Lupins (Lupinus Albus, Lupinus Mutabilis). Journal of Food Quality 28(4): 325-332.
Dhindsa, R.S., and Clenland, R.E., 1975. Water stress and protein synthesis. Plant Physiology 55: 782-785.
Fatma, E.M., El-Zamik, I., Tomader, T., El-Hadidy, H.I., Abd El-Fattah, L., and Seham Salem, H. 2006. Efficiency of biofertilizers, organic and in organic amendments application on growth and essential oil of marjoram (Majorana hortensis L.) plants grown in sandy and calcareous. Zagazig University and Soil Fertility and Microbiology Department, Desert Research Center, Cairo, Egypt.
Feller, U. 2004. Proteolysis. In: Plant Cell Death Processes. Ed. Elsevier 107-123.
Fhatuwani, N M. 1985. Effects of nitrogen, phosphorus, and potassium nutrition on total polyphenol content of Bush tea (Athrixia phylicoides L.) leaves in shaded nursery environment. Hortscience 42 (2): 334 – 8.
Glick, BR., Penrose, MD., and Li, J. 1998.  A model for the lowering of plant ethylene concentration by plant growth-promoting bacteria. J. of Theoretical Biology 190: 63 - 8. 
Gilik, B.R., Penrose, D., and Wenbo, M., 2001. Bacterial promotion of plant growth.    Biotechnology Advances 19:135- 138.
Gong, Y., Toivonen, P. M., Lau, O. L., and Wiersma, A. P. 2001. Antioxidant system level in "Braeburn" apple is related in its browning disorder. Botanical Bulletin of Academia Sinica 42: 259-264. 
Gupta, M., Prasad, A., Ram, M., and Kumar, S., 2002. Effect of the vesicular–arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresource Technology 81:77-79.
Jaleel, C.A., Gopi, R., and Panneerselvam, R. 2008. Growth and photosynthetic pigments responses of two varieties of Catharanthus roseus to triadimefon treatment. Comptes Rendus Biol 331: 272-277.
Joshee, N., Mentreddy, S., and Yadav, AK. 2007. Mycorrhizal fungi and growth and development of micropropagated Scutellaria integrifolia plants. Industrial Crops and Products 25:169-177.
Jung, S. 2004. Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Science 166(2): 466- 459.
Khalid, K. A. 2006. Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum spp.). International Agrophysics20: 289-296.
Kim, B.J., Kim, J.H., Kim, H.P., and Heo, M.Y. 1997. Biological screening of 100 plant extracts for cosmetic use (II): Antioxidative activity and free radical scavenging activity. International Journal of Cosmetic Science 19(6): 299-307.
Koc, E., İslek, C., and Üstun, A.S. 2010. Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. Gazi University. Journal of Science 23: 1-6.
Lee, S.J., Umano, K., Shibamoto, T., and Lee, K.G., 2005 .Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chemistry 91:131-137.
Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press. Ltd, London.
Oussalah, M., Caillet, S., Saucier, L., and Lacroix, M., 2006. Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Science 73: 236-244.
Marulanda, A., and G.M, Barea. 2009. Stimulation of plant growth and drought to clearance by native micro-organisms from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulator 28: 115- 124.
Pedrol, N., Ramos, P., and Riegosa, M. J., 2000. Phenotypic plasticity and acclimation to water deficits in velvet-grass: a long-term greenhouse experiment. Changes in leaf morphology, photosynthesis and stress-induced metabolites. Plant Physiology 157: 383-393.
Ratti, N., Kumar, S., Verma, H., and Gautam. S. 2001. Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiological Research 156: 145-149.
Ruiz-Lozano, J.M. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic strees, new perspectives for molecular studies. Mycorrhiza 13: 309-17.
Sanchez Govin, E., Rodriguez Gonzales, H., Carballo Guerra, C., and Milanes Figueredo, M., 2005. Influencia de los abonos orgánicos y biofertilizantes en la calidad de las especies medicinales Calendula officinalis L., Matricaria recutita L. Rev. Cub. De PlantsMed 10: 1. 1-5.
Schonfeld, M. A., Johnson, R. C., Carver, B. F., and Mornhinweg, D.W. 1988. Water relation in winter wheat as drought resistance indicators. Crop Science 28:526-531.
Seevers, P.M., and Daly, J.M. 1970.Studies on wheat stem rust resistance controlled at the Sr6 locus. II. Peroxidase activities. Phytopathology 60(11), 1642-1647.
Smith, S.E., and D.G.M, Read. 2008. Mycorrhizal Symbiosis. 3rd Ed. Academic, London 141 pp.
Tilak, K. V. B., N, Ranganayaki., K, K. Pal., R, De., R, K. Saxena., C, S. Nautiyal., S, Mitral., A. K, Tripathi., and B. N, Johri. 2005. Diversity of plant growth and soil health supporting bacteria. Current Science 89: 136-150.
Totten, P.A., Lara, J.C., and Lory, S. 1990. The rpoN gene product of  Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. Journal of Bacteriology 172:389-396.
Wu, S., Cao, Z., Li, Z., Cheung, K., and Wong, M. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155-166.
Youssef, A., Edris, A., and Gomaa, A. 2004. A comparative study between some plant growth regulators and certain growth hormones producing microorganisms on growth and essential oil composition of Salvia officinalis L. Plants. Annals of Agricultural Science-Cairo 49:299-312.
Zelong, L., and Junhui, P. 2017. A practical method for extending the biuret assay to protein determination of corn-based products. Food Chemistry 289-293
Zhang, K. M., Yu, H. J., Shi, K., Zhou,Y. H., Yu, J. Q., and Xia, X. J. 2010. Photoprotective roles of anthocyanins in Begonia semperflorens. Plant Science 179(3):202-208.