Effect of nano-particles and sulfate of zinc on growth and quality of petunia (Petunia Hybrida var Parade) grown in various moisture conditions

Document Type : Original Article

Authors

1 1MS.C graduate, Department of Horticultural Science, University of Mohaghegh ardabili

2 HORTICULTURE SCIENCE, Faculty of agriculture, university of Mohaghegh Ardabili

3 department of plant science and medicinal plants. faculty of agriculture( meshgin shahr campus). university of mohaghegh ardabili

4 MS.C graduate, Department of Horticultural Science, Islamic Azad University of Miane

5 assistant professor , Department of Horticultural Science, Faculty of agricultural Science and Natural Resources, University of Mohaghegh ardabili

Abstract

Introduction: Drought stress is one of the major abiotic stresses which adversely affect crop productivity and plant growth. A good nutritional status of the  plant could alleviate the adverse effects of drought stress. Zinc dificiency is one one the most predominant mineral dificiency especially in dry and semi-dry regions. Zinc has a critical role in protein metabolism, gene experssion, cell-wall integrity, other micro-nutrient content and carbon metabolism.
Hybrid Petunias are garden standbys developed from several South American Petunia species. These sun and heat-loving annuals or tender perennials were among the first ornamentals to be bred for the bedding plant market in the 1950s. Petunia is cultivated in flower beds and pots and requires full sunlight to produce plants and flowers with bright attractive colors. Petunias are as easy to grow as they are pretty. They require ample sun and grow best in rich soil with good drainage. They bloom best with regular fertilization and will continue to flower all seasons.
Material and methods: seedlings grown on media containing 70: 30 garden soil: sand were spraed with diefferent concentrations (0, 5, 25 and 50 MgL-1) of  Nanoparticles and zinc- sulfate. Spraying repeated in two weeks interval on plants after drought stress implementation (50 and 100 percent of field capacity). Morphological and physiological traits were evaluated during the growing period and after final harvest.
Results and Discussion: results showed that drought stress affected all of the studied traits significantly. Spraying with zinc nanoparticle had significant and positive effects on all morphological and physiological trait except stomatal conductance. Spraying with zinc-sulfate enhanced plant growth, proline accumulation, flower and leaf number. In case of flower number, no significant difference were observed among treatments under drought strss condition, while, under normal condition, plants treated with 25 mg/l of each  compound produced 7 more flowers than control.
 Conclusion: spraying with zinc nanoparticles was more effective than zinc- sulfate on alleviation of drought stress and consequently on growth and flowering of petunia plants.

Keywords


احمدی، ع.، و بیکر، د.، 1379. عوامل روزنه­ای محدود کنتده فتوسنتز در گندم در شرایط تنش خشکی. مجله علوم کشاورزی ایران شماره 31، صص 825- 813.
امیدی، ح.، جعفرزاده چیمه، ل. و رحیم زاده م.، 1391. ارزیابی تنش خشکی بر عملکرد دانه ژنوتیپ های کلزا با استفاده از شاخصهای تحمل به خشکی. پژوهش و سازندگی 25: 57-66.
بابائیان، م.، حیدری، م.، و قنبری، الف.، 1389. اثر تنش خشکی و محلول­پاشی عناصر کم مصرف بر ویژگی­های فیزیولوژیک و جذب عناصر غذایی در آفتابگردان . مجله علوم زراعی ایران 12شماره، صصص 391-377
حیدری، ن.، پوریوسف، م.، و توکلی، الف. 1392. تاثیر تنش خشکی بر فتوسنتز، پارامترهای وابسته به آن و محتوی نسبی آب گیاه انیسون. مجله پزوهش­های تولیدات گیاهی. شماره 25، صص 828-939.
درویش زاده، ف.، نجات زاده، ف.، و ایرانبخش، ع.، 1394. تاثیر نانو ذرات نقره بر تحمل به شوری گیاه ریحان در مراحل جوانه زنی در آزمایشگاه .تازه­های بیوتکنولوژی سلولی- مولکولی. شماره 20. صص 46-58.
عابدی باباعربی، س.، موحدی دهنوی، م.، یدوی، ع.، و ادهمی، الف.، 1390. تأثیر محلول‌پاشی روی و پتاسیم بر صفات فیزیولوژیک و عملکرد گلرنگ در شرایط تنش خشکی. مجله الکترونیک تولید گیاهان زراعی، شماره 4، صص 95-75.
 
عادلی، س.، خورگامی، ع. و رفیعی، م.، 1392.  اثر محلول­پاشی سولفات روی بر خصوصیات کمی و کیفی سویا در منطقه خرم آباد. فصل نامه دانش نوین در کشاورزی پایدار، شماره 3، صص  57- 51.
Abbas-Zade, B., Sharifi, A., Abadi, A., Lebaschi, M.H., Naderi, M. and Maghdami, F. 2007. Effect of drought stress on proline, soluble sugars, chlorophyll and relative water content of Melissa officinalis L. Journal Research Aromatic Plants of Iran 23: 504-513.
Auge R. M., Stodola, A. J .W., Moore, J. L., Klingeman, W. E. and Duan, X. 2003. Comparative dehydratationtolerance of foliage of several ornamental crops. Scientia Horticulture 98:511-516.
Bahreininejad, B., Razmjoo, J. and Mirza, M. 2012 Influence of water stress on morphophysiological and phytochemical traits in Thymus daenensis. International Journal of Plant. Production. 7: 151- 166
Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid determination of free proline for water stress study. Plant and Soil. 39: 205-207.
Baybordi A. 2005. Effect of zinc, iron, manganese and copper onwheat quality under salt stress conditions, Journal  of Water  and Soil, 140:150-170.
Dole J.M. and Wilkins, H. F .1999. Floriculture: Principles and Species. Prentice – Hall,inc. New Jersey.613P.
Farooq, M., Wahid, A., Kobayash, N., Fujita, D. and Basra, S. M. A. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development.   29: 185–212.
Geravandi, M., Farshadfar, E. and Kahrizi, D. 2011. Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes. Russian Journal of Plant Physiology. 58: 69-75.
Good, A. and Zaplachiniski, S. 1994. The effects of drought on free amino acid accumulation and protein syntesis in Brassica napus. Physiologia Plantarum. 90: 9–14.
Hajiboland, R., Amirazad, H. 2010. Drought tolerance in Zn-deficient red cabbage. Hortscience. Vol. 37, 2010, No. 3: 88–98.
Hajiboland. R. and Amirazad, H. 2010. Drought tolerance in Zn-deficient red cabbage (Brassica oleracea L. var. capitata) plants. Hortscience 37: 88–98.
Halder, N.K., Ahmad, R., Sharifuzzaman, S.M., Bagam, K.A., Siddiky,M.A. 2007. Effect of boron and zinc fertilization on corm and cormel production Gladiolus in grey terrace soils of Bangladesh. Journal of Sustainable Crop Production, 25: 85 – 89.
Hansch, R. and  Mendel, R. 2009. Physiological function of mineral micronuntrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opininon in Phant Biology. 12: 259- 266.
Hellubust, J. A. and Caraigie, J. S.1978. Handbook of physiological methods. Physiological and biochemical methods. Cambridge University Press.
Hissao, T. 1973. Plant responses to water stress. Annual Review of Plant Physiology 24: 519-570.
Khalifa, R. K. H. M ., Shaaban, S. h. A. and  Rawia, A. 2011. Effect of foliar application of zinc sulfate and boric acid on growth, yield and chemical constituents of iris plants. Journal of Appllied Science 4: 1943 – 2429.
Luo, Z., He. X., Chen, L., Lin T., Shun, G, and Fang C. 2010. Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. 2010. International Journal of Agriculture & Biology. International Journal of Agriculture Biology, 12: 119–124
 Mokadem, H.E., and Sorur. M. 2014. Effect of Bio and Chemical Fertilizers on Growth and Flowering of Petunia hybrida Plants. 9(2):67-77.
Ramirez-Vallejo, P. and Kelly, J. D. 1998. Traits related to drought resistance in common bean. Euphytica. 99:127–136.
Taran, N, Storozhenko, V., Svietlova, N., Batsmanova, L., Shvartau, V and Kovalenko, M. 2017. Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nano Research Letters. DOI 10.1186/s11671-017-1839-9
Zhang, C. and Huang, Z. 2013. Effects of endogenous abscisic acid, jasmonic acid, polyamines, and polyamine oxidase activity in tomato seedlings under drought stress. Scientia Horticulture. 159:172–177.