Study the effect of different mycorrhizal fungi on some growth indices, photosynthetic pigments, flavonoids and carotenoid content of pot marigold flower

Document Type : Original Article

Authors

1 Department of Horticulture Science and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Horticulture Science and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad

3 Production Department, High Educational Society of Agriculture and Animal Husbandry, Torbat Jam

Abstract

Introduction: Studying the fertilizer requirement and replacing biological fertilizers (mycorrhizal fungi) instead of chemical fertilizers is one of the great valuable issues in sustainable agriculture. Mycorrhizal fungi as biological fertilizer has applied to absorb nutriotion elements from the soil to increase plant growth. The researchers indicated that mycorrhizal fungi cause to change the metabolism of host plant by mycorrhizal inoculation and this modification in metabolism, produce defensive compounds in plant. Furthermore, mycorrhizal fungi improve plant growth by enhancing nutritional and water conditions of plant with changing the root morphology and increasing absorption area with their root development in the soil and stimulating gas interchanging via enhancing the sink capacity, which can be in consequence of nutritional conditions and water relationship enhancement by that fungus. Calendula officinalis is an annual plant from Asteraceae family, one of the well-known medicinal plants that nowadays uses lot in pharmaceutical, cosmetic and hygienic industries. The aim of this study was to evaluate the effect of various mycorrhizal fungi species on some growth characteristics, photosynthetic pigments, secondary metabolites amount (flavonoid and carotenoid) in maigold flower.
Materials and Methods: This study was performed as a completely randomized design with three replications. The treatments comprised inoculation of different mycorrhizal fungi species included Glomus fasciculatum ,Glomus claroideum, Glomus versiform, Glomus geosporum, Glomus caledonium, Glomus mosseae, Glomus  intraradicese Glomus etanicatum, Glomus gigaspora and without fungal inoculation. The inoculation media of mycorrhizal fungi included vegetative organs and the spores of mycorrhizal fungi. In the experimental treatments 200 g of this media used for 5 Kg soil each pot.
The seeds of pot marigold were cultivated in the cultivation tray containing equal ratio of perlite and cocopeat, then at four leaves stage, three seedlings were transferred to each  pot. After about three months from applying the treatments and at flowering stage, the plants harvested and the studied characteristics included plant height, branchlet number, inflorescence number, stem diameter, flower dry weight, photosynthetic pigments (chlorophyll a, b, carotenoid and total chlorophyll), relative water content, flavonoid and carotenoid of flowers were measured.  The data were subjected to statistical analysis by Minitab 18 software and the means were compared with Bonferroni test at P < 0.05.
Results and Discussion: The results of analysis of variance showed that the effect of different types of mycorrhizal fungi on all of the studied characteristics in this experiment were significant at 1% probability level. Among the nine mycorrhizal fungi species that used in this study, application of G. mosseae had the highest effect on improving the most growth indices of pot marigold such as plant height, branchlet number, inflorescence number and flower dry weight. Also it had positive effect on enhancing photosynthetic pigments, so that total chlorophyll content increased 67% in this treatment compare to control. The highest relative water content and flower carotenoid also observed in this treatment. After that G. etanicatum and G. geosporum fungi provided the best conditions for pot marigold. Furthermore, the highest fungus colonization percentage (76.7%) with marigold root was observed at G. intraradicese and there was no significant differences with G. mosseae (71%) and G. geosporum  (70.66%) and the lowest colonization percentage (33%) was obtained at control and after that among different  mycorrhiza species G. gigaspora showed 53% colonization. Therefore, among the studied mycorrhiza species in this research, G. mosseae, G. etanicatum and G. geosporum can provide the best conditions for growth and desirable production of secondary metabolites in pot marigold as medicinal plant and suitable replacement for chemical fertilizers in organic agriculture.
Conclusions: Most mycorrhizal fungi species used in this research had high symbiosis with pot marigold root, therefore the measured characteristics in the most inoculated plants with mycorrhizal fungi significantly increased in comparison with control that can be in consequence of improving water relationships of plant and probably better nutrition absorption by mycorrhizal fungi. Of course G. gigaspora and G. claroideum in comparison with the other mycorrhizal fungi species that studied in this experiment, could not create good colonization with pot marigold root and therefore had not good effect on growth improvement and yield of marigold. Based on the obtained results of this study, G. mosseae, G. etanicatum and G. geosporum can provide the best conditions for desirable growth and production for pot marigold and as biological fertilizer are suitable replacement for chemical fertilizers.
 

Keywords


اقحوانی شجری، م.، رضوانی مقدم ،پ.، قربانی، ر. و نصیری محلاتی م.، 1394. اثرات کاربرد کودهای آلی، زیستی و شیمیایی بر عملکرد کمی و کیفی گیاه دارویی گشنیز (Coriandrum sativum). علوم باغبانی جلد 29، شماره ۴، صص 500-486.
ایران­خواه، س.، گنجعلی، ع.، لاهوتی، م . و مشرقی، م.، 1395. بررسی تأثیر باکتری Pseudomonas putida و قارچ Glomus  intraradices  بر برخی صفات مورفولوژی و بیوشیمیایی گیاه شنبلیله. نشریه علوم باغبانی (علوم و صنایع کشاورزی)،  جلد 30، شماره 1، صص121-112.
دژابون، ف.، 1390. ارزیابی کاربرد نهاده‌های آلی و روش‌های خشک کردن در تولید گیاه دارویی همیشه‌بهار (Calendula officinalis L.). پایان‌نامه کارشناسی ارشد مهندسی علوم باغبانی. پردیس کشاورزی و منابع طبیعی دانشگاه تهران.
سعیدنژاد، ا.ح.، خزاعی، ح .ر. و رضوانی مقدم، پ.،1391. مطالعه اثر کاربرد مواد آلی، کودهای بیولوژیک و کود شیمیایی بر برخی خصوصیات مورفولوژیکی، عملکرد و اجزای عملکرد سورگوم علوفه­ای ( Sorghum bicolor). فصلنامه پژوهشهای زراعی ایران، جلد 10، شماره 3، صص 510-503.
عظیمی، ر.، جنگجو، م. و اصغری ح.ر.، 1392. تاثیر تلقیح قارچ میکوریزا بر استقرار اولیه و خصوصیات مورفولوژیک گیاه دارویی آویشن باغی در شرایط عرصه طبیعی. نشریه پژوهشهای زراعی ایران ، جلد11، شماره 4، صص676-666.
مقدسان، ش.، صفی‌پور افشار، ا. و نعمت‌پور، ف.، 1394. نقش میکوریزا در تحمل به خشکی همیشه‌بهار. اکوفیزیولوژی گیاهان زراعی، جلد 9، شماره4(36)، صص 532-521.
مهدوی دامغانی، ع.، محمودی، ح . و لیاقتی، ه.، 1387. درآمدی بر کشاورزی ارگانیک (زیستی). مشهد: انتشارات جهاد دانشگاهی (دانشگاه مشهد).
هاشم­زاده، ف.، میرشکاری، ب.، یارنیا، م.، رحیم زاده خویی، ف. و تاری نژاد، ع.ر،1393. نقش کودهای زیستی و شیمیایی نیتروژنه و فسفره بر عملکرد، اجزای عملکرد و درصد همزیستی مایکوریزا در شوید. اکوفیزیولوژی گیاهان زراعی، جلد 8، شماره 3(31)، صص270-257.
Arora, D., Rani, A., and A. Sharma. 2013. A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacognosy Reviews. 7: 179-187.
Auge, R.M., Toler, H.D., and A.M. Saxton. 2015. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza. 25(1): 13-24.
Cabello, M., Irrazabal, G., Bucsinszky, A. M., Saparrat, M., and S. Schalamuk. 2005. Effect of an arbuscular mycorrhizal fungus Glomus mosseae, and a rock-phosphate-solubilizing fungus, Penicillium thomii, on Mentha piperita growth in a soilless medium. Journal of Basic Microbiology. 45:182-189.
Ceccarelli, N., Curadi, M., Martelloni, L., Sbrana, C., Picciarelli, P., and M. Giovannetti. 2010. Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant and Soil. 335: 311-323.
Chaudhary, V., Kapoor, R., and A.K. Bhatnagar. 2007. Effect of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza. 17: 581-587.
Chaudhary, V., Kapoor, R., and A.K. Bhatnagar. 2008. Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annual L. Applied Soil Ecology. 40: 174-181.
Chowdhury, A., and A. Khan. 2000. Chemical analysis of the essential oil from Tagetes minuta. Journal of Agricultural and Marine Sciences. 5(1): 25-27.
Colla, G.‚ Rouphael, Y., Cardarelli, M., Tullio‚ M., Carlos, M.R., and R. Elvira. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils. 44: 501-509.
Dalpe, Y. 1993. Vesicular-Arbuscular mycorrhiza. In Soil sampling and methods of analysis. eds. M.R. Carter, 287-301. Lewis Publishers.
Demir, S. 2005. Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology. 28(2-4): 85-90.
Dolatabadi, H., Mohammadi Goltapeh, E., Moieni, A., and A. Varma. 2012. Evaluation of different densities of auxin and endophytic fungi (Piriformospora indica and Sebacina vermifera) on Mentha piperita and Thymus vulgaris growth. Journal of Biotechnology. 11(7): 1644-1650.
Duck, J.A. 2000. HandBook of Medicinal Herbs. CRC Press. USA. pp: 102.
Einhellig, F.A. 1986. Mechanism and modes of action of allelochemicals. In The science of allelopathy. eds. A.R. Putnam and C.S. Tang, 75 - 99. John Wiley and Sons, New York.
Fonseca, Y.M., Vicentini, F.T.M.C., Catini, C.D., and M.J.V. Fonseca. 2010. Determination of rutin and narcissin in marigold extract and topical formulations by liquid chromatography: applicability in skin penetration studies. Quim Nova. 33: 1320-1324.
Freitas, M.S., Martins, M.A., and I.C. Vieira. 2004. Production and quality of essential oils of Mentha arvensis in response to inoculation with mycorrhizal fungi. Brazilian Agricultural Research. 39: 887-894.
Gianninazzi, S., Gollette, A., Binet, M.N., Tuinen, D., and D. Redecke. 2010. Key role of arbuscular mycorrhiza in ecosystem services. Mycorrhiza. 20: 519-530.
Gogoi, P., and R.K. Singh. 2011. Different effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Indian Journal of Sciences and Technology. 4(2): 119-125.
Hammer, E.C., Nasr, H., Pallon, J., Olsson, P.A., and H. Wallander. 2011. Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza. 21: 117-129.
Harborne, J.B. 1980. Plant Phenolics. In: Bell EA and Charlwood BV. (Eds.). Secondary Plant Products. Springer Verlag, Berlin: 329-402.
Hazzoumi, Z., Moustakime, Y., Elharchli, E., and KH. Amrani Joutei. 2015. Effect of arbuscular mycorrhizal fungi and water stress on ultrastructural change of glandular hairs and essential oil compositions in Ocimum gratissimum. Chemical and Biological Technologies in Agriculture. 2: 1-10.
Kaosaad, T., Vierheilig, H., Nell, M., Zitterl-Eglseer, K., and J. Novak. 2006. Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza. 16: 443-446.
Kapoor, R., Giri, B., and G. Mukerji. 2001. Mycorrhization of coriander (Coriandrum sativum L) to enhance the concentration and quality of essential oil. Journal of the Science of Food and Agriculture. 82(4): 339-342.
Kapoor, R., Giri, B., and K.G. Mukerji. 2002. Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi Sprague). World Journal of Microbiology and Biotechnology. 18(5): 459-463.
Kapoor, R., Giri, B., and K.G. Mukerji. 2004. Improved growth and essential oil yield and quality in Foeniculum vulgare Mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresource Technology. 93: 307-11.
Kapoor, R., Chaudhary, V., and A.K. Bhatnagar. 2007. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza. 17(7): 581-587.
Krishna, H., Singh, S.K., Sharma, R.R., Khawale, R.N., Grover, M., and V.B. Patel. 2005. Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular mycorrhizal fungi (AMF) inoculated during ex vitro acclimatization. Scientia Horticulture. 106: 554-567.
Lim, T.K. 2012. Edible Medicinal and Non-medicinal Plants. Springer.
Lutts, S., Kinet, J.M., and J. Bouharmont. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany. 78(3): 389-398.
Mahmoudzadeh, M., Rasouli Sadaghiani, M.H., Asgari Lajayer, H., and A. Hasani. 2016. The effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on nutrient uptake and some morphological factors in peppermint (Mentha piperita). Electronic Journal of Soil Management and Sustainable Production. 6(1): 161-176.
Moraes, R.M., Andrade, Z.D., Bedir, E., Dayan, F.E., Lata, H., Khan, I., and A.M.S. Pereira. 2004. Arbuscular mycorrhiza improves acclimatization and increases lignin content of micropropagated mayapple (Podophyllum peltatum L.). Plant Science. 166: 23-29.
Karagiannidis, N., Thomidis, T., and E.P. Filotheou. 2012. Effects of Glomus lamellosum on growth, essential oil production and nutrients uptake in selected medicinal plants. Journal of Agricultural Science. 4(3): 137-144.
Perner, H., Rohn, S., Drimel, G.N., Batt, D., Schwarz, L., Kroh, W., and E. George. 2008. Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in Orions. Agriculture and Food Chemistry. 56: 3538-3545.
Raal, A., Kirsipuu, K., Must, R., and Tenno, S. 2009. Content of total carotenoids in Calendula officinalis L. From different countries cultivated in Estonia. Natural Product Communcation. 4: 35-38.
Rahmatzadeh, S., and S.K. Kazemitabar. 2013. Biochemical and antioxidant changes in regenerated periwinkle plantlets due to mycorrhizal colonization during acclimatization. International Journal of Agriculture and Crop Sciences. 5(14): 1535-1540.
Rapparini, F.‚ Liusia, J., and J. Penuelas. 2008. Effect of arbuscular mycorrhiza colonization on terpen emission and content of Artemisia annua L. Plant Biology. 10(1):108-122.
Sánchez, F.J., Manzanares, M., de Andres, E.F., Tenorio, J.L., and L. Ayerbe. 1998. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Research. 59(3): 225-235.
Sanchez-Blanco, M.I., Ferrandez, T., Morales, M., Morata, A., and J.J. Alarcon. 2004. Variations in water status, gas exchange and growth in Rosmarinus officinalis plant infected with Glomus desert cola under drought condition. Journal of Plant Physiology. 161: 673-682.
Sasanelli, N., D'Addabbo, T., Takacs, T., and A. Attila. 2008. Remove from marked records influence of arbuscular mycorrhizal fungi on nematicidal properties of leaf aqueous extracts of Ruta graveolens and Thymus vulgaris. Giornate Fitopatologiche. 14(1): 311-316.
Selvaraj, T., and Chellappan, P. 2006. Arbuscular mycorrhizae: a diverse personality. Journal of Central European Agriculture. 7(2): 349-358.
Sensoy, S., Demir, S., Turkmen, O., Erdinc, C., and O. Savur. 2007. Responses of some different pepper (Capsicum annum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Scientia Horticulturae. 113: 92-95.
Shabahang, J., Khorramdel, S., Siahmargue, A., Gheshm, R., and L. Jafari. 2014. Evaluation of integrated management of organic manure application and mycorrhiza inoculation on growth criteria, qualitative and essential oil yield of hyssop (Hyssopus officinalis L.) under Mashhad climatic conditions. Journal of Agroecology. 6(2): 353-363.
Sharma, A.K. 2002. Biofertilizers for Sustainable Agriculture. Agrbis India, pp.407.
Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F. and Y. Huang. 2009. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Canadian Journal Microbiol. 55: 879-886.
Tabrizi, L., Mohammadi, S., Delshad, M., and B. MoteshareZadeh. 2015. Effect of arbuscular mycorrhizal fungi on yield and phytoremediation performance of pot marigold (Calendula officinalis L.) under heavy metals stress. International Journal of Phytoremediation. 17(12): 1244-1252.
Tang, M., Chen, H., Huang, G.C., and Z.Q. Tian. 2009. Am fungi effects on the growth and physiology of Zea mays L. seedlings under diesel stress. Soil Biology and Biochemistry. 41: 936- 940.
Wu, Q.S., Zou, Y.N., Xia‚ R.X., and M.Y. Wangi. 2009. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Soil, Environmental and Atmospheric Sciences. 55(10): 436-442.
Zhishen, J., mencheng T., and W. Jianming. 1999. The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 64: 555-559.