Influence of growth promoting bacteria on growth and physiological traits of pistachio in saline soils

Document Type : Original Article

Authors

1 Agriculture and Natural resources Faculty, Ardakan University, Ardakan, Iran

2 Agricultural and Natural Resources Research Center, Yazd, Iran

Abstract

Materials and Methods: In this study, the effect of plant growth promoting bacteria (Pseudomonas putida R8 and P. fluorescens R153 isolates) on pistachio cultivars including Badami Zarand, Akbari and Ahmad Ahaghi were studied in a saline soil as a factorial experiment in a completely randomized design. The studied characters included fresh and dry weights of shoots and shoots, leaf area and number, relative water content (RWC) chlorophyll and carotenoid content.
Results and Discussion: The results indicated that the use of growth promoting bacteria (R8 and R115 isolates) increased the amount of growth indices including fresh and dry weights of stems and roots, as well as leaf area and number. R8 isolate caused an increase in root and shoot root weight of 74% and 54% in Badami cultivar, respectively. The leaf area and leaf number characters increased by 81% and 30% in the treatment of R8 growth promoting bacteria in Badami cultivar. Relative leaf water content (RWC), proline content, total chlorophyll, a and b, and carotenoids were also improved by the use of growth promoters, especially R8 P. putida. The treatment of R8 bacteria in Badami cultivar was able to increase the absorption of potassium and phosphorus elements by 35% (leaf), 43% (root), 61% (leaf) and 53% (root).
Conclusion: The results of this study indicated that the application of bacteria growth promoters to the release of effective compounds in plant growth can increase the growth and physiological indices even in plants that are in salinity stress.

Keywords


تـاج­آبـادی­پـور، ع.، 1381. اثرات پایـه و پیونـدک بـر روی درصد زود خندانی پسـته و ارتبـاط آن هـا بـا افالتوکسـین. گـزارش طـرح تحقیقاتـی. موسسـه تحقیقـات پسـته کشـور.
حکم­آبادی، ح.، ارزانی، ک.، و دهقانی­شورکی، ی. پناهی، ب. 1382. پاسخ پایه­های درختان پسته بادامی زرند، سرخس و قزوینی به زیادی بور و سدیم کلراید  در آب آبیاری. مجله علوم و فنون کشاورزی و منابع طبیعی. شماره4، صص 11-23.
دانشیان، ج. هادی، ح. جنوبی، پ. 1388. ارزیابی خصوصیات کمی و کیفی ژنوتیپ­های سویا در شرایط تنش کم آبی. علوم زراعی ایران. شماره 11،  صص 403-409.
میرمحمدی میبدی، س. ع. 1383. مدیریـت تنـش­های سرما و یخ­زدگی گیاهان زارعی و باغی. انتشارات جهاد دانشگاهی واحد صنعتی اصفهان.
Anantha Krishnan, G., R. Ravikumar, S. Girija and A. Ganapathi. 2004. Selection of efficient arbuscular mycorrhizal fungi in the rhizospher of cashew and their application in the cashew nursery. Scientia Horticulturae100: 369-375.
Anser, A. Shahzad, M. A. Basra, S. H. Javaid Iqbal, M. Ahmad Alias, A. and Bukhsh and Sarwar, M. 2012. Salt stress alleviation in field crops through nutritional supplementation of silicon. Pakistan Journal of Nutrition, 11 : 637-655.
Bakhtiari Esfandagheh, M., 2011. The effect of arbuscular mycorrhizae fungi (Glomus intraradices) on drought tolerance of pistachio seedlings Pistacia vera L. cv. Badami. M. Sc. Thesis, Department of Horticultural Science Faculty of Agiculture, University of Vali-e-Asr, farsi Rafsanjan.
Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207.
Cechin, I., N. Corniani, T.F. Fumis and A.C. Cataneo. 2010. Differential responses between mature and young leaves of sunflower plants to oxidative stress caused by water deficit. Ciencia Rural, 40: 1290-1294.
Chapman, H.I., and Pratt, P.F. 1961. Methods of Analysis for Soils, Plants and Waters.  The University of California's Division of Agicultural Science, Berkeley, California, USA.
Chookhampaeng S., 2011. The effect of salt stress on gowth, Chlorophyll content, prolin content and antioxidative enzymes of pepper (Capsicum annuum L.) seedlings. European Journal of Scientific Research, 49:103-109.
Cramer, G. R. 2002. Response of abscisic acid mutant of Arabidopsis to salinity. Functional Plant Biology 29: 561567.
Dell'Amico, J., Torrecillas, A., Rodriguez, P., Morte, A. and M.  Sanchez-Blanco.  2002. Responses of tomato plants associated with the arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. Journal of Agicultural Science, 138: 387-393.
Demiral, M.A. 2005. Comparative response of two olive (Olea europaea  L.) cultivars to salinity. Turkish Journal of Agiculture, 29:267-274.
Farkhonded R., Nabizadeh E. and Jalilnezhad. N. 2012. Effect of salinity stress on proline content, membrane stability and water relation in two sugar beet cultivars. International Journal of Agicultural Science, 2(5): 385-392.
Flowers, T.J. and Dalmond, D. 1992. Protein synthesis in halophytes: the influence of potassium, sodium and magnesium in vitro. Plant and Soil, 146: 153– 161.
Gaber, M.A. 2010. Antioxidative defense under salt stress. Plant Signaling and Behavior, 5: 369-374.
Gonzalez L., and Gonzalez-Vilar M. 2003. Determination of relative water content, p. 207-212. In: J. Manuel and R. Goger (eds.). Handbook of plant ecophysiology techniques. Kluwer Academic Publishers, London.  
Habib S. H., Kausar H. and H. M. Saud 2016. Plant gowth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Research International, 6: 227-235.
Hoagland, D. R. and D. I. Arnon. 1950. The water-culture method for gowing plant without soil. Calif. Agic. Experiment. Station Circular, 347: 1-34.
Jiang, C., Q. Cui, K. Feng, D. Xu, C. Li and Zheng. Q. 2016. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiologiae Plantarum, 82: 1-9.
Khan M.A. and Duke N.C. 2001. Halophytes- A resource for future. Wetlands Egol. Mang.6:455-456.
Levitt, J. 1980. Response of Plants to Environmental Stresses. Vol. 2. Water, radiation, salt and other stresses. Academic Press. New York. 289 pp. 32-44.
Liang, Y. C. Wong, J. W. C. and Long, W. 2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) gown in cadmium contaminated soil. Chemosphere, 58: 475-483.
Marschner H., 1995. Mineral Nutrition of Plants, Ed 2. Academic Press, Boston.
Mehboob, I., Naveed, M. and Zahir, Z. A. 2009. Rhizobial Association with Non-Legumes: Mechanisms and Applications. Critical Review of Plant Sciences, 28: 432-456.
Mostajeran, A., and Rahimi-Eichi, V. 2009. Effects of drought stress on gowth and yield of rice Oryza sativa L.) cultivars and accumulation of proline and soluble sugars in sheath and blades of their different ages leaves. American-Eurasian Journal of Agicultural & Environmental Sciences, 5(2). 264-272.
Neumann P.1977. Salinity resistance and plant gowth revised. Plant Cell and Environment 20:1193-1198.
Noreen, Z. and Ashraf. M. 2009. Assessment of variation in antioxidative defense system in salttreated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. Journal of Plant Physiology, 166: 1764-1774.
Rabie, G. H. and Almadini, A. M. 2005. Role of bio inoculants in development of salt tolerance of Vicia faba plants. African Journal of biotechnology 4(3): 210-222.
Rahneshan, Z., Nasibi, F., and Ahmadi Moghadam, A, 2018. Effects of salinity stress on some gowth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of Plant Interactions, 13(1): 73-82.
Rajcan, I., L. M. Dwyer and M. Tollenaar. 1999. Note on relationship between leaf soluble carbohydrate and chlorophyll concentration in maize during leaf senescence. Field Crops Research 63: 13-17.
Ramoliya, P. J. and A. N. Pandey. 2003. Effect of salinization of soil on emergence, gowth and survival of seedlings of Cordia rothii. Forest Ecology and Management, 176: 185-194.
Rehman, A., and Nautiyal, C. S. 2002. Effect of drought on the gowth and survival of the stress-tolerant bacterium Rhizobium sp. NBRI2505 sesbania and its drought-sensitive transposon Tn5 mutant, Current Microbiology, 45(5): 368–377.
Saleh, B. 2013. Water Status and Protein Pattern Changes towards Salt Stress in Cotton. Journal of Stress Physiology & Biochemistry, 9 (1): 113-123.
Saravanan, V.S., Madhaiyan, M. and Thangaraju, M. 2007. Solubilization of zinc compounds by the diazotrophic, plant gowth promoting bacterium (Gluconacetobacter diazotrophicus). Chemosphere, 66(9): 1794-1798.
Sepaskhah, A. and M. Maftoun. 1981. Gowth and chemical composition of pistachio seedlings as influenced by irrigation regimes and salinity levels of irrigation water. I. Gowth. Soil Science Society of America Journal, 57: 469-476.
Sheibani, A. 1994. Pistachio production in Iran. First International Symposium on Pistachio Nut, Adana, Turkey.
Suareza, C., Cardinalea, M., Rateringa, S., Steffensb, D., Jungb, S., Zapata, A M., Rita, M., Plauma, G. and Schnella, S. 2015. Plant gowth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Applied Soil Ecology, 95: 23–30.
Wu, Q.S. and Y.N. Zou. 2009. Arbuscular mycorrhizal symbiosis improves gowth and root nutrient status of citrus subjected to salt stress. Science Asia, 35: 388–391.
Yang, J., Kloepper, J. W. and Ryu, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Science, 14, 1–4
Yazici I., I. Turkan, A. H. Sekmen and T. Demiral. 2007. Salinity tolerance of purslane (Portulaca olerceaL.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental of Botany, 61: 49-57.
Zeinoddini, A., Amirpure, M., and Farazmand, M. 2007. Evaluation of irrigation quality on soils mutation and pistachio yield in Anar zone. 10 the Congeress of Iranian Soil Science, Shahrivar 2007. Karaj, 355- 356.